- 【Python】 Stacking: 强大的集成学习方法
音乐学家方大刚
Pythonpython集成学习开发语言
我们都找到天使了说好了心事不能偷藏着什么都一起做幸福得没话说把坏脾气变成了好沟通我们都找到天使了约好了负责对方的快乐阳光下的山坡你素描的以后怎么抄袭我脑袋想的薛凯琪《找到天使了》在机器学习中,单一模型的性能可能会受到其局限性和数据的影响。为了解决这个问题,我们可以使用集成学习(EnsembleLearning)方法。集成学习通过结合多个基模型的预测结果,来提高整体模型的准确性和稳健性。Stacki
- llama源码学习·model.py[3]ROPE旋转位置编码(2)旋转角度生成代码
小杜不吃糖
llama
一、源码注释defprecompute_freqs_cis(dim:int,end:int,theta:float=1000.0):'''预先计算频率和复数的cosine和sine值,用于后续的PositionalEncodingdim:维度end:一个序列的最大长度或位置的最大值theta:用于计算频率的超参数,默认值为1000.0'''#生成一个等比数列,即频率(frequencies),这种
- minimind2学习:(1)训练
溯源006
minimind学习学习深度学习生成模型
1、数据下载参考:https://github.com/jingyaogong/minimind/tree/master2、预训练训练6个epochspythontrain_pretrain.py--epochs6训练过程:LLM总参数量:25.830百万Epoch:[1/6](0/11040)loss:8.940lr:0.000550000000epoch_Time:106.0min:Epoch
- DPO 核心理论推导:参考策略距离约束下的最优策略 + 损失函数设计
iiiiii11
机器学习人工智能论文阅读笔记语言模型深度学习
Rafailov,Rafael,etal.“Directpreferenceoptimization:Yourlanguagemodelissecretlyarewardmodel.”AdvancesinNeuralInformationProcessingSystems36(2023):53728-53741.本文整理了DPO论文中两个核心结论的推导,包括参考策略距离约束下的最优策略的形式,以及
- Stacking算法:集成学习的终极武器
civilpy
算法集成学习机器学习
Stacking算法:集成学习的终极武器在机器学习的竞技场中,集成学习方法以其卓越的性能而闻名。其中,Stacking(堆叠泛化)作为一种高级集成技术,更是被誉为“集成学习的终极武器”。本文将带你深入了解Stacking算法的原理和实现,并提供一些实战技巧和最佳实践。1.Stacking算法原理探秘Stacking算法的核心思想是训练多个不同的基模型,并将它们的预测结果作为新模型的输入特征,以此来
- MiniMind
亚伯拉罕·黄肯
大模型人工智能
数据集分类:tokenizer训练集:这个数据集用于训练分词器(tokenizer),是文本处理中的一个重要步骤。它可以帮助模型更好地理解文本数据的结构。Pretrain数据:这是用于预训练模型的数据集,它可以帮助模型学习语言的基本结构和特征。SFT数据:SFT(SupervisedFine-Tuning)数据集,用于监督式微调,可以提高模型在特定任务上的性能。DPO数据1和DPO数据2:这两个数
- 集成学习(上):Bagging集成方法
万事可爱^
机器学习修仙之旅#监督学习集成学习机器学习人工智能Bagging随机森林
一、什么是集成学习?在机器学习的世界里,没有哪个模型是完美无缺的。就像古希腊神话中的"盲人摸象",单个模型往往只能捕捉到数据特征的某个侧面。但当我们把多个模型的智慧集合起来,就能像拼图一样还原出完整的真相,接下来我们就来介绍一种“拼图”算法——集成学习。集成学习是一种机器学习技术,它通过组合多个模型(通常称为“弱学习器”或“基础模型”)的预测结果,构建出更强、更准确的学习算法。这种方法的主要思想是
- 直方图梯度提升:大数据时代的极速决策引擎
万事可爱^
大数据机器学习深度学习直方图梯度提升GBDT算法
一、为什么需要直方图梯度提升?在Kaggle竞赛的冠军解决方案中,超过70%的获奖方案都使用了梯度提升算法。但当数据量突破百万级时,传统梯度提升树(GBDT)面临三大致命瓶颈:训练耗时剧增:每个特征的分割点计算都需要全量数据排序内存消耗爆炸:存储排序后的特征值需要额外空间处理效率低下:无法有效利用现代CPU的多核特性而梯度提升决策树(GBDT)作为集成学习的代表算法,通过迭代构建决策树实现预测能力
- 【集成学习】:Stacking原理以及Python代码实现
Geeksongs
机器学习python机器学习深度学习人工智能算法
Stacking集成学习在各类机器学习竞赛当中得到了广泛的应用,尤其是在结构化的机器学习竞赛当中表现非常好。今天我们就来介绍下stacking这个在机器学习模型融合当中的大杀器的原理。并在博文的后面附有相关代码实现。总体来说,stacking集成算法主要是一种基于“标签”的学习,有以下的特点:用法:模型利用交叉验证,对训练集进行预测,从而实现二次学习优点:可以结合不同的模型缺点:增加了时间开销,容
- LLMs之minimind:minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/分布式预训练/自动混
一个处女座的程序猿
NLP/LLMsCaseCodetransformerminimind预训练
LLMs之minimind:minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/分布式预训练/自动混合精度优化/梯度累积/梯度裁剪/定期保存模型目录minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/
- windows使用ssh-copy-id命令的解决方案
爱编程的喵喵
Windows实用技巧windowssshssh-copy-id解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了windows使用ssh-copy-
- ffmpeg录屏
_洛_神
音视频音视频
qt+ffmpeg屏幕录制软件完整工程链接:https://download.csdn.net/download/weixin_42538789/85013858测试代码#include#include"screencapture.h"#includeusingnamespacestd;intmain(intargc,char*argv[]){QCoreApplicationa(argc,argv
- easyswoole学习记录
司江龙
swoolePHPeasyswooleswoole
php-fpm的工作方式php-fpm就是php-fastcgi进程管理器主要工作的就是mastr进程,主要和linux进行一个协调,当请求从nginx到fpm的时候,master会把请求交给自己下面管理的子进程一个池模型,问题:一个work进程内只会处理一个请求,也就是说这个进程内在同一时刻只会处理一个request请求,不会处理多个,所以一台服务器的并发数就取决于服务器开启了多少个work进程
- 鸿蒙NEXT版实战开发:使用WebRTC进行Web视频会议
那只斑马不睡觉
鸿蒙5.0ArkWebOpenHarmonyharmonyos华为前端androidArkWeb
往期鸿蒙全套实战精彩文章必看内容:鸿蒙开发核心知识点,看这篇文章就够了最新版!鸿蒙HarmonyOSNext应用开发实战学习路线鸿蒙HarmonyOSNEXT开发技术最全学习路线指南鸿蒙应用开发实战项目,看这一篇文章就够了(部分项目附源码)使用WebRTC进行Web视频会议Web组件可以通过W3C标准协议接口拉起摄像头和麦克风。开发者在使用该功能时,需配置ohos.permission.CAMER
- ARM架构薄记小记1——ARM架构的快速介绍
charlie114514191
嵌入式面试笔记整理计算机架构学习从0开始的学习ARMv7aIMX6ULL芯片arm开发架构
ARM架构薄记小记1——ARM架构的快速介绍笔者最近正在简单的了解一下ARM架构,特别是ARMCortexA架构的部分,这里,笔者想要薄记的问题有这样一些,也算是简单记录一下自己学习ARM架构的记录。问题1:ARM架构的历史是如何的,以此我们可以洞察ARM架构设计的一些动机问题2:我们知道,ARM架构中常见的架构是ARMv7到ARMv9,这些架构有发生怎样的变化?每一个架构的一些纲领性的东西是什么
- 关于AI OS那点事
大囚长
科普天地大模型人工智能
AIOS(人工智能操作系统)作为面向智能时代的操作系统,其功能定位和架构设计与传统操作系统(如Linux、Windows、iOS等)存在显著差异。一、AIOS需具备的核心功能智能体全生命周期管理智能体调度与并发:需支持多智能体任务的优先级排序、资源分配及并发执行,例如通过轮询调度或动态优先级算法优化LLM资源利用率。上下文感知与切换:通过上下文管理器实现智能体交互状态的快照保存与恢复,解决LLM生
- struts1+struts2项目兼容升级到了spring boot 2.7
和稀泥
strutsspringbootjava
原项目比较复杂,集成了各种框架(struts1struts2spring3等),趁工作之余练练手,学习一下springboot。大概花了一周时间才调通。一、调整jar版本,寻找合适的版本。第一步、首先原项目JDK6,要用springbootJDK肯定要升级了。原来的struts2也有漏洞了,也要升级。在不升级其他框架的情况下。jdk2117都可以运行,索性选择jdk21,反正是练手。第二步、str
- 强化学习 Reward
百态老人
算法
在强化学习中,奖励(Reward)是智能体(Agent)与环境(Environment)交互过程中获得的重要反馈信号。奖励机制在强化学习中扮演着至关重要的角色,因为它不仅指导智能体如何在环境中行动,还影响其策略的优化和最终的学习效果。奖励是智能体在执行某个动作后从环境中获得的即时反馈,用于评估该动作的好坏。这种反馈帮助智能体调整其行为策略,以期在未来获得更多的奖励。奖励可以是正数、负数或零,其或负
- C++有哪些高级特性值得学习?
c++
C++是一种功能丰富且复杂的编程语言,其中许多高级特性可以帮助开发者编写更高效、更安全、更灵活的代码。以下是一些值得深入学习的C++高级特性:模板编程(Templates)模板是C++中实现泛型编程的核心机制,允许开发者编写与数据类型无关的代码。模板函数cpp复制templateTmax(Ta,Tb){return(a>b)?a:b;}优点:模板函数可以处理多种数据类型,避免了代码重复。应用场景:
- DeepSpeed-Chat:Reward Model【奖励模型】
u013250861
#LLM/训练RL/强化学习排序强化学习
第二阶段:奖励模型微调奖励模型(RM)微调类似于第一阶段有监督微调(SFT)。但是,RM和SFT微调之间存在几个关键差异:训练数据差异:对于SFT微调,数据是查询(query)和答案(answer)拼接在一起。然而,对于RM微调,每批数据由两个查询-答案对组成,即具有高分答案和低分答案的相同查询。这也导致了如下所述的第二个差异。训练目标差异:对于RW,训练目标是pairwiserankingsco
- springboot自定义封装线程池工具类
k&p
Javaspringbootjavaspring
1.首先配置线程池的配置文件,在此处定义线程池的核心线程数等核心参数:/***核心线程数=cpu核心数+1*/privatefinalintcore=Runtime.getRuntime().availableProcessors()+1;@AutowiredprivateThreadPoolPropertiesthreadPoolProperties;@Bean(name="threadPool
- 【DeepThinking】人生反思洞察之「知行合一」(经验贴)
碣石潇湘无限路
经验分享笔记生活人生深度思考知行合一
引言最近,我深刻体会到一种焦虑:既有生活的现实压力,也有对人生方向的迷茫与无奈。回顾自身,我发现这并不是物质层面的匮乏或欲望驱动,而是对“我是谁”“我想要什么”“我能做什么”的追问。这种焦虑,常常让我想起人的出生:起初我们依赖父母和环境,被动地活着;成年后,我们凭借主动学习、工作和不断积累的信念,去实现自我价值。但终有一天,我们会停下来审视自己,看清一些本质问题,并且发觉自己需要对这一生负责:我应
- Yolo系列之Yolo的基本理解
是十一月末
YOLOpython开发语言yolo
YOLO的基本理解目录YOLO的基本理解1YOLO1.1概念1.2算法2单、多阶段对比2.1FLOPs和FPS2.2one-stage单阶段2.3two-stage两阶段1YOLO1.1概念YOLO(YouOnlyLookOnce)是一种基于深度学习的目标检测算法,由JosephRedmon等人于2016年提出。它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位
- WPF 控件保存图片显示不全的问题,和后台代码添加控件不能显示的问题
lijiaweizuishuai
WPFWPF控件截图
这几天研究自动生成货物标签,想着在WPF中做一个自定义标签生成控件,然后点击那个标签控件生成打印,本来是个挺简单的功能,WPF控件保存图片有现成的API方法。没想到是个坑。现在把他填一下有两种解决方案1、https://blog.csdn.net/u012366767/article/details/81461432这是一种还有一种是我发现当一个控件想生成图片的时候是根据当前图片上层最近的一个Pa
- 83.为什么Object类型可以用来打开窗口 C#例子 WPF例子
军训猫猫头
wpfc#ui
在WPF中,打开和关闭窗口时使用object类型是完全可行的,任何窗口类型都可以通过object类型来操作,只要正确地将其转换为Window类型。为什么可以使用object类型?Window是所有窗口的基类:在WPF中,所有窗口类型(如MainWindow、SettingsWindow等)都继承自Window类。因此,任何窗口实例都可以被隐式地转换为object类型,因为object是C#中所有类
- 高效利用AI处理大型编程任务
大囚长
大模型人工智能
在大型编程任务中,通过将任务细分为适合AI上下文处理能力的子任务并整合生成目标应用,已成为当前AI辅助开发的主流方法。一、任务分解的核心策略模块化功能拆分通过分层架构设计将系统拆分为独立模块(如用户认证、支付接口、数据存储),每个模块的代码量控制在AI模型的上下文窗口内(如ClaudeMax的200k窗口可处理约2万行代码)。例如开发电商系统时,可分解为「购物车逻辑」「库存管理」「订单流水」等子模
- HCIA-AI人工智能笔记3:数据预处理
噗老师
华为认证人工智能笔记wpf数据处理AI华为认证
统讲解数据预处理的核心技术体系,通过Python/Pandas与华为MindSpore双视角代码演示,结合特征工程优化实验,深入解析数据清洗、标准化、增强等关键环节。一、数据预处理技术全景图graphTDA[原始数据]-->B{数据清洗}B-->B1[缺失值处理]B-->B2[异常值检测]B-->B3[重复值删除]A-->C{特征工程}C-->C1[标准化/归一化]C-->C2[离散化分箱]C--
- AWE大会来袭:家电圈上演“无限战争”
互联网江湖
人工智能大数据microsoft
文:互联网江湖作者:刘致呈3月19日,一年一度的中国家电及消费电子博览会AWE如期而至。每次大会,大小品牌方都会携自己的新品亮相,是家电圈的“春晚”。这次的看点除了AI外,还有一个有意思的点,就是部分品牌开始向大家电进军。比如追觅科技,在高端扫地机器人市场上取得一番成绩之后,表示要开始做冰箱、空调、洗衣机了。无独有偶,主攻厨电赛道的方太,也开始进军冰箱板块;还有石头科技,也有洗烘一体的洗衣机。这些
- 看完荣耀CEO李健的“阿尔法战略”,我愈发的怀念赵明了
互联网江湖
人工智能大数据物联网
文:互联网江湖作者:刘致呈赵明辞任一月余,新官上任第一把火来了。灯光打在身上,新任荣耀CEO李建站在台上宣布,荣耀就此将成为一家AI终端生态公司。李健身后的屏幕上,映出一行字:“HONORALPHAPLAN”。这就是荣耀未来的新方向:“阿尔法战略”。所谓“阿尔法战略”,其实核心就一句话,荣耀要转型成为“生态公司”。第一把火就要给重新定位战略,李健这把火烧得很猛,分量很足。向着生态转型并没有错,华为
- 黑客攻击deepseek服务原理解析
大囚长
大模型机器学习黑客帝国人工智能
黑客可通过操纵大模型的连续对话上下文回顾机制,构造恶意请求以触发模型进入无限思考循环或超长上下文处理,从而形成对对话服务的DoS攻击(拒绝服务攻击)。这一攻击方式的核心在于利用大模型对上下文处理机制的脆弱性,通过极低的攻击成本实现资源耗尽。一、攻击原理与实现路径无限推理循环攻击通过输入特定构造的提示词(如“树中两条路径之间的距离”),诱导模型陷入无限思考链(Chain-of-Thought,CoT
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR