- 微软Data Formulator:用AI重塑数据可视化的未来
几道之旅
人工智能智能体及数字员工人工智能信息可视化
在数据驱动的时代,如何快速将复杂数据转化为直观的图表是每个分析师面临的挑战。微软研究院推出的开源工具DataFormulator,通过结合AI与交互式界面,重新定义了数据可视化的工作流。本文将深入解析这一工具的核心功能、安装方法及使用技巧,助你轻松驾驭数据之美。一、DataFormulator是什么?DataFormulator是一款基于大语言模型(LLM)的AI工具,旨在帮助用户通过自然语言和界
- java面向对象基础
miehamiha
java开发语言
引入三大特征封装核心思想就是“隐藏细节”、“数据安全”,将对象不需要让外界访问的成员变量和方法私有化,只提供符合开发者意愿的公有方法来访问这些数据和逻辑,保证了数据的安全和程序的稳定。所有的内容对外部不可见。继承子类可以继承父类的属性和方法,并对其进行拓展。将其他的功能继承下来继续发展。多态同一种类型的对象执行同一个方法时可以表现出不同的行为特征。通过继承的上下转型、接口的回调以及方法的重写和重载
- 如何使用百度云Qianfan进行AI应用开发
dgay_hua
百度云人工智能云计算python
技术背景介绍百度云Qianfan是由百度公司提供的云服务,包含了云存储、文件管理、资源共享、以及第三方集成等功能。作为开发者,Qianfan支持多种AI应用开发组件,包括大语言模型(LLMs)、对话模型、嵌入模型和向量存储等。本文将重点介绍如何利用这些组件进行实际的AI应用开发。核心原理解析百度云Qianfan通过其丰富的API接口和云计算能力,为开发者提供了易于集成的AI开发环境。核心组件如Qi
- 免费GIS工具箱:支持多种格式的模型预览及编辑,还能进行协同编辑
GISBox
GISBoxGIS切片分发倾斜摄影OBJFBXOSGB
市面上不少GIS软件价格高昂,功能却不尽人意。但GISBox却不太一样,它的切片、分发功能完全免费,能预览、编辑多种格式模型,还支持协同编辑,性价比远超同类软件,如果你想进一步了解它,不妨看看这篇文章。01打破价格与功能的双重困境在地理信息系统(GIS)领域,大多数软件的高价一直是小型企业、科研团队以及个人开发者的一大阻碍。这些软件不仅采购成本高,后续的维护和升级费用也不低。与此同时,很多软件功能
- 【大语言模型_5】xinference部署embedding模型和rerank模型
没枕头我咋睡觉
大语言模型语言模型embedding人工智能
一、安装xinferencepipinstallxinference二、启动xinference./xinference-local--host=0.0.0.0--port=5544三、注册本地模型1、注册embedding模型curl-XPOST"http://localhost:5544/v1/models"\-H"Content-Type:application/json"\-d'{"mod
- 向量检索、检索增强生成(RAG)、大语言模型及相关系统架构——典型面试问题及简要答案
快撑死的鱼
算法工程师宝典(面试学习最新技术必备)语言模型系统架构面试
1.什么是向量检索?它与传统基于关键字的检索相比有什么不同?答案要点:向量检索是将文本、图像、音频等数据映射为向量,在高维向量空间中基于相似度或距离进行搜索。与传统基于关键字的检索(如倒排索引)相比,向量检索更关注“语义”或“特征”,能找出语义上相似但未必包含相同关键词的内容。向量检索非常适合多模态场景(例如“以图搜图”)或自然语言问答(同义词、上下文关联等)。2.什么是检索增强生成(RAG)?核
- 使用LangSmith追踪LLM令牌使用情况的指南
dgay_hua
java服务器前端python
在将应用程序投入生产时,追踪令牌使用情况以计算成本是一个重要的步骤。本文将深入探讨如何从LangChain模型调用中获取这些信息。技术背景介绍在大语言模型(LLM)的应用中,令牌使用计数是估算模型调用成本的基础。LangSmith提供了一种有效的方式来帮助跟踪应用程序中的令牌使用。此外,使用回调机制可以在不同的API调用中进行监控,这对于复杂的应用程序尤其重要。核心原理解析通过在API调用中使用回
- 如何评估一个RAG系统(RAGas评测框架)-下篇
写程序的小火箭
大语言模型人工智能语言模型chatgptlangchaingpt
RAGas是一个用于评测RAG系统的评测框架,它支持与不同大语言模型的集成,并与langchain生态打通,能够很方便的构建评测系统。下面是RAGas的一些链接论文:https://arxiv.org/pdf/2309.15217官方文档:Ragashttps://github.com/explodinggradients/ragas官方文档及github对框架的使用介绍的比较详细,本文不会就该方
- 【AI大模型应用开发】【RAG评估】0. 综述:一文了解RAG评估方法、工具与指标
同学小张
大模型人工智能笔记经验分享gptagiAIGC
大家好,我是同学小张,日常分享AI知识和实战案例欢迎点赞+关注,持续学习,持续干货输出。+v:jasper_8017一起交流,一起进步。微信公众号也可搜【同学小张】本站文章一览:前面我们学习了RAG的基本框架并进行了实践,我们也知道使用它的目的是为了改善大模型在一些方面的不足:如训练数据不全、无垂直领域数据、容易出现幻觉等。那么如何评估RAG的效果呢?本文我们来了解一下。文章目录推荐前置阅读0.R
- 大模型最新面试题系列:微调篇之微调基础知识
人肉推土机
大模型最新面试题集锦大全面试人工智能AI编程大模型微调LLM
一、全参数微调(Full-Finetune)vs参数高效微调(PEFT)对比1.显存使用差异全参数微调:需存储所有参数的梯度(如GPT-3175B模型全量微调需约2.3TB显存)PEFT:以LoRA为例,仅需存储低秩矩阵参数(7B模型使用r=16的LoRA时显存占用减少98%)实战经验:在A10080GB显存下,全量微调LLaMA-7B需DeepSpeedZero3优化,而LoRA可直接单卡运行2
- 一步到位!7大模型部署框架深度测评:从理论到DeepSeek R1:7B落地实战
人肉推土机
人工智能python
本文在掘金同步发布:文章地址更多优质文章,请关注本人掘金账号:人肉推土机的掘金账号随着大语言模型(LLM)的广泛应用,如何高效部署和推理模型成为开发者关注的核心问题。本文深入解析主流模型部署框架(Transformers、ModelScope、vLLM、LMDeploy、Ollama、SGLang、DeepSpeed),结合其技术原理、优缺点及适用场景,并提供DeepSeekR1:7B的详细部署实
- 对MCP工作流的一些个人认知
持续学习的老赵
人工智能
最近在学习MCP系统,虽尚未深入掌握,但已对其工作原理有了初步认识,在此分享下学习收获。MCP是一套能实现客户端、多种服务与大模型协同工作的系统,能处理任务请求并及时反馈。其工作流程如下:一、获取并更新服务使用方法(一)收集整理使用方法MCP正常运行依赖于对各类服务使用方法的了解,这要靠已在系统注册且可识别的功能模块。一旦有新模块注册或旧模块更新,系统会自动检测并获取其使用方法信息。MCP订阅服务
- GEO:在AI时代抢占DeepSeekC位?
白雪讲堂
人工智能
前言:当SEO遇见AGI——一场静默的流量革命在生成式AI日均处理53亿次查询的今天,传统SEO的「关键词-排名-点击」逻辑正在崩塌。DeepSeek、ChatGPT、豆包等大模型用动态生成的答案,悄然截流了68%的搜索需求。更残酷的是:当用户问"某个产品推荐"时,AI可能同时调用37个信源,却不会留下任何可追踪的搜索痕迹。这场革命迫使企业必须从「关键词优化」转向「场景占领」,从「流量争夺」进化到
- 每日一题--内存池
秋凉 づᐇ
java开发语言
内存池(MemoryPool)是一种高效的内存管理技术,通过预先分配并自主管理内存块,减少频繁申请/释放内存的系统开销,提升程序性能。它是高性能编程(如游戏引擎、数据库、网络服务器)中的核心优化手段。内存池的核心原理预先分配:初始化时一次性申请一大块内存(称为“池”),避免程序运行时频繁调用malloc/new。自主管理:将大块内存划分为多个固定或可变大小的内存单元,由程序自行分配和回收。复用机制
- 《颠覆传统,用Web3.0技术手撸一个去中心化微博(含完整代码)》
煜bart
web3人工智能区块链
一、为什么你的下一个项目必须拥抱Web3.0?传统互联网正面临三大致命伤:-用户数据被巨头垄断(某浪删帖事件频发)-单点故障导致服务瘫痪(某云宕机损失过亿)-创作者收益被平台榨取(某音抽成高达70%)**Web3.0的破局方案:**-✅数据永久存储在IPFS/Arweave-✅智能合约自动分配收益-✅抗审查的链上内容存证---###二、核心技术栈揭秘(附对比图表)|技术|传统方案|Web3.0方案
- Java 基础数据类型
代码先锋者
java开发java开发语言
一、引言在Java中每个变量都必须先声明其数据类型,才能使用(即Java是强类型语言)。Java的数据类型分为两大类:基本数据类型(PrimitiveDataTypes)和引用数据类型(ReferenceDataTypes)。二、基本数据类型分类Java有8种基本数据类型(如下图所示),可分为四大类(整数型,浮点型,字符型和布尔型):8大基本数据类型具体位数、取值范围和默认值等如下表所示:数据类型
- MCP协议
zhurui_xiaozhuzaizai
入口集锦人工智能自然语言处理
1什么是MCP?MCP(ModelContextProtocol,模型上下文协议)是由Anthropic推出的一种开放标准,旨在统一大型语言模型(LLM)与外部数据源和工具之间的通信协议。MCP的主要目的在于解决当前AI模型因数据孤岛限制而无法充分发挥潜力的难题,MCP使得AI应用能够安全地访问和操作本地及远程数据,为AI应用提供了连接万物的接口。1.1MCP与functioncallMCP是在O
- 【大模型系列】SFT(Supervised Fine-Tuning,监督微调)
Kwan的解忧杂货铺@新空间代码工作室
s2AIGC大模型
欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。推荐:kwan的首页,持续学习,不断总结,共同进步,活到老学到老导航檀越剑指大厂系列:全面总结java核心技术,jvm,并发编程redis,kafka,Spring,微服务等常用开发工具系列:常用的开发工具,IDEA,Mac,Alfred,Git,
- 什么是设计模式以及常见的例子(如单例、工厂、观察者等)
python资深爱好者
c++设计模式单例模式
设计模式(DesignPattern)是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式的主要目的是为了可重用代码、让代码更容易被他人理解、提高代码的可靠性。设计模式一般包含模式名称、问题、目的、解决方案、效果等基本要素。设计模式根据目的(即模式是用来做什么的)可以分为三大类:创建型模式、结构型模式和行为型模式。下面分别给出几个常见的设计模式例子,包括单例模式、工厂模
- Open WebUI – 本地化部署大模型仿照 ChatGPT用户界面
m0_74824845
chatgptui
OpenWebUI介绍:OpenWebUI是一个仿照ChatGPT界面,为本地大语言模型提供图形化界面的开源项目,可以非常方便的调试、调用本地模型。你能用它连接你在本地的大语言模型(包括Ollama和OpenAI兼容的API),也支持远程服务器。Docker部署简单,功能非常丰富,包括代码高亮、数学公式、网页浏览、预设提示词、本地RAG集成、对话标记、下载模型、聊天记录、语音支持等。官网地址:ht
- 微信小程序中使用wx.getLocation获取实时经纬度,并使用经纬度获取当前定位信息
學习?學个屁
微信小程序小程序前端javascript
需在微信公众平台申请wx.getLocation接口,否则上线不可使用,申请需将图片/录屏资料准备齐全,需有配送/打车类的含地图实时绘制路线的功能通过率才大,其他简单文字展示信息不易通过。官方文档:位置/wx.getLocation;需在app.json文件内进行声明:"requiredPrivateInfos":["getLocation","chooseLocation","chooseAdd
- 视频剪辑行业的现状与进阶之路:一个双视角分析
程序员
视频剪辑行业的现状与进阶之路:一个双视角分析一、现状解析商业角度分析成本控制培训需要投入时间和人力成本快节奏的市场环境要求快速产出人员流动性大,培训投入可能无法获得长期回报市场需求大量内容需要快速产出标准化的剪辑模板更容易管理追求效率大于创新风险规避现成模板降低出错风险统一风格便于品控减少个人风格带来的不确定性剪辑师角度分析职业发展受限难以系统学习完整工作流程创意空间被压缩技能提升遇到瓶颈技能断层
- 使用DeepEval进行LLM的单元测试
VYSAHF
单元测试log4jpython
在构建大语言模型(LLM)时,测试是确保模型行为和性能的关键步骤。ConfidentAI推出的DeepEval提供了一套完整的工具包,帮助开发者进行LLM的单元测试和集成测试。结合这些功能,你可以快速迭代,创建更健壮的语言模型。技术背景介绍DeepEval是ConfidentAI开发的一个包,用于语言模型的单元测试和集成测试。它的目标是让开发者能够通过合成数据创建、测试和优化模型,从而实现更高效的
- 腾讯云大模型知识引擎与DeepSeek:打造懒人专属的谷歌浏览器翻译插件
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3腾讯云云计算
摘要:随着人工智能技术的飞速发展,越来越多的前沿技术和工具已走入日常生活。翻译工具作为跨语言沟通的桥梁,一直处于技术创新的风口浪尖。本文探讨了腾讯云大模型知识引擎与DeepSeek结合谷歌浏览器插件的可能性,旨在为用户提供一种便捷、高效的翻译体验。通过应用深度学习、自然语言处理和知识图谱技术,该插件不仅能实时翻译网页内容,还能根据上下文进行智能推荐,实现精准的语境转换。本文将详细阐述其设计思路、技
- Netty源码—2.Reactor线程模型二
东阳马生架构
Netty应用与源码NettyReactor线程模型
大纲1.关于NioEventLoop的问题整理2.理解Reactor线程模型主要分三部分3.NioEventLoop的创建4.NioEventLoop的启动4.NioEventLoop的启动(1)启动NioEventLoop的两大入口(2)判断当前线程是否是NioEventLoop线程(3)创建一个线程并启动(4)NioEventLoop的启动总结(1)启动NioEventLoop的两大入口入口一
- DeepSeek-R1大模型微调技术深度解析:架构、方法与应用全解析
大势下的牛马
搭建本地gpt架构deepseek微调
1.DeepSeek-R1大模型架构设计与技术特性1.1架构设计DeepSeek-R1作为超大规模语言模型,其核心架构设计包含以下创新:专家混合架构(MoE)采用6710亿参数的混合专家架构(MoE),每个推理过程仅激活370亿参数,实现计算效率与资源利用率的突破性提升。Transformer框架增强基于改进型Transformer架构,结合多头注意力机制(MLA)与动态权重分配技术,优化了长程依
- AI学习教程DeepSeek使用教程合集 免费下载
oneboxai
学习
1.DeepSeek本地部署2.Deepseek搭建个人知识库3.DeepSeek提示词详解4.Deepseek使用技巧大全5.DeepSeek提示词大全6.DeepSeek保姆级新手教程7.DeepSeek各类应用8.Deepseek写小说9.DeepSeekV3部署教程10.DeepseekwordExcel11.Deepseek科研论文12.Deepseek开发游戏13.大模型通用一-A1指
- 技术革命、需求升级与商业生态迭代——基于开源AI大模型与智能商业范式的创新研究
说私域
人工智能开源小程序微信零售
摘要:本文以技术哲学与商业生态系统理论为分析框架,通过质性研究与案例分析法,系统阐释第三次与第四次科技革命如何通过技术范式创新引发用户需求跃迁,进而驱动商业生态系统的结构性变革。研究聚焦开源AI大模型、AI智能名片、S2B2C商城及小程序源码等前沿技术工具,解构其如何重构"技术赋权-需求进化-商业物种爆发"的价值传导链条。研究发现:技术革命通过创造新需求空间、重构价值网络拓扑结构、降低创新参与门槛
- 分享12个国内AI对话聊天的免费网站(含DeepSeek大模型)
码上飞扬
人工智能语言模型DeepSeek
在人工智能领域,基于对话的语言模型已成为当前研究的热点,其中以ChatGPT为代表的模型凭借其卓越的语言理解与交互能力备受瞩目。为帮助用户更好地选择和使用这类AI工具,本文将介绍12个国内可直接体验对话聊天功能的平台,为用户提供实用参考。1、腾讯元宝地址:https://hunyuan.tencent.com/bot/chat腾讯混元大模型是由腾讯全链路自研的通用大语言模型,拥有超千亿参数规模,预
- 面向对象(进阶)(‘封装‘,‘多态‘,‘对象属性‘,‘类属性‘,‘类方法‘,‘对象方法‘及其应用场景)
烈焰猩猩
python
‘封装’,'多态’及其应用场景一,封装及其应用场景封装的定义属于面向对象的三大特征之一,就是隐藏对象的属性和现实细节,仅对外提供公共的访问方式.(我们学的函数,类,都是封装的体现).封装的格式__属性名__属性名()封装的好处和弊端好处提高代码的安全性.由私有化来保证提高代码的的复用性.由函数来保证弊端代码量增加了.因为私有的内容外界想访问,必须提供公共的访问方式,代码量就增加了.封装的案例案例需
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi