拓扑排序(二)之 C++详解

本章是通过C++实现拓扑排序。

目录
1. 拓扑排序介绍
2. 拓扑排序的算法图解
3. 拓扑排序的代码说明
4. 拓扑排序的完整源码和测试程序

转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列 目录

拓扑排序介绍

拓扑排序(Topological Order)是指,将一个有向无环图(Directed Acyclic Graph简称DAG)进行排序进而得到一个有序的线性序列。

这样说,可能理解起来比较抽象。下面通过简单的例子进行说明!
例如,一个项目包括A、B、C、D四个子部分来完成,并且A依赖于B和D,C依赖于D。现在要制定一个计划,写出A、B、C、D的执行顺序。这时,就可以利用到拓扑排序,它就是用来确定事物发生的顺序的。

在拓扑排序中,如果存在一条从顶点A到顶点B的路径,那么在排序结果中B出现在A的后面。

拓扑排序的算法图解

拓扑排序算法的基本步骤:

1. 构造一个队列Q(queue) 和 拓扑排序的结果队列T(topological);
2. 把所有没有依赖顶点的节点放入Q;
3. 当Q还有顶点的时候,执行下面步骤:
3.1 从Q中取出一个顶点n(将n从Q中删掉),并放入T(将n加入到结果集中);
3.2 对n每一个邻接点m(n是起点,m是终点);
3.2.1 去掉边<n,m>;
3.2.2 如果m没有依赖顶点,则把m放入Q;
注:顶点A没有依赖顶点,是指不存在以A为终点的边。

拓扑排序(二)之 C++详解

以上图为例,来对拓扑排序进行演示。

拓扑排序(二)之 C++详解

第1步:将B和C加入到排序结果中。
    顶点B和顶点C都是没有依赖顶点,因此将C和C加入到结果集T中。假设ABCDEFG按顺序存储,因此先访问B,再访问C。访问B之后,去掉边<B,A>和<B,D>,并将A和D加入到队列Q中。同样的,去掉边<C,F>和<C,G>,并将F和G加入到Q中。
    (01) 将B加入到排序结果中,然后去掉边<B,A>和<B,D>;此时,由于A和D没有依赖顶点,因此并将A和D加入到队列Q中。
    (02) 将C加入到排序结果中,然后去掉边<C,F>和<C,G>;此时,由于F有依赖顶点D,G有依赖顶点A,因此不对F和G进行处理。
第2步:将A,D依次加入到排序结果中。
    第1步访问之后,A,D都是没有依赖顶点的,根据存储顺序,先访问A,然后访问D。访问之后,删除顶点A和顶点D的出边。
第3步:将E,F,G依次加入到排序结果中。

因此访问顺序是:B -> C -> A -> D -> E -> F -> G

拓扑排序的代码说明

拓扑排序是对有向无向图的排序。下面以邻接表实现的有向图来对拓扑排序进行说明。

1. 基本定义

#define MAX 100

// 邻接表

class ListDG

{

    private: // 内部类

        // 邻接表中表对应的链表的顶点

        class ENode

        {

            int ivex;           // 该边所指向的顶点的位置

            ENode *nextEdge;    // 指向下一条弧的指针

            friend class ListDG;

        };



        // 邻接表中表的顶点

        class VNode

        {

            char data;          // 顶点信息

            ENode *firstEdge;   // 指向第一条依附该顶点的弧

            friend class ListDG;

        };



    private: // 私有成员

        int mVexNum;             // 图的顶点的数目

        int mEdgNum;             // 图的边的数目

        VNode *mVexs;            // 图的顶点数组



    public:

        // 创建邻接表对应的图(自己输入)

        ListDG();

        // 创建邻接表对应的图(用已提供的数据)

        ListDG(char vexs[], int vlen, char edges[][2], int elen);

        ~ListDG();



        // 深度优先搜索遍历图

        void DFS();

        // 广度优先搜索(类似于树的层次遍历)

        void BFS();

        // 打印邻接表图

        void print();

        // 拓扑排序

        int topologicalSort();



    private:

        // 读取一个输入字符

        char readChar();

        // 返回ch的位置

        int getPosition(char ch);

        // 深度优先搜索遍历图的递归实现

        void DFS(int i, int *visited);

        // 将node节点链接到list的最后

        void linkLast(ENode *list, ENode *node);

};

(01) ListDG是邻接表对应的结构体。 mVexNum是顶点数,mEdgNum是边数;mVexs则是保存顶点信息的一维数组。
(02) VNode是邻接表顶点对应的结构体。 data是顶点所包含的数据,而firstEdge是该顶点所包含链表的表头指针。
(03) ENode是邻接表顶点所包含的链表的节点对应的结构体。 ivex是该节点所对应的顶点在vexs中的索引,而nextEdge是指向下一个节点的。

2. 拓扑排序

/*

 * 拓扑排序

 *

 * 返回值:

 *     -1 -- 失败(由于内存不足等原因导致)

 *      0 -- 成功排序,并输入结果

 *      1 -- 失败(该有向图是有环的)

 */

int ListDG::topologicalSort()

{

    int i,j;

    int index = 0;

    int head = 0;           // 辅助队列的头

    int rear = 0;           // 辅助队列的尾

    int *queue;             // 辅组队列

    int *ins;               // 入度数组

    char *tops;             // 拓扑排序结果数组,记录每个节点的排序后的序号。

    ENode *node;



    ins   = new int[mVexNum];

    queue = new int[mVexNum];

    tops  = new char[mVexNum];

    memset(ins, 0, mVexNum*sizeof(int));

    memset(queue, 0, mVexNum*sizeof(int));

    memset(tops, 0, mVexNum*sizeof(char));



    // 统计每个顶点的入度数

    for(i = 0; i < mVexNum; i++)

    {

        node = mVexs[i].firstEdge;

        while (node != NULL)

        {

            ins[node->ivex]++;

            node = node->nextEdge;

        }

    }



    // 将所有入度为0的顶点入队列

    for(i = 0; i < mVexNum; i ++)

        if(ins[i] == 0)

            queue[rear++] = i;          // 入队列



    while (head != rear)                // 队列非空

    {

        j = queue[head++];              // 出队列。j是顶点的序号

        tops[index++] = mVexs[j].data;  // 将该顶点添加到tops中,tops是排序结果

        node = mVexs[j].firstEdge;      // 获取以该顶点为起点的出边队列



        // 将与"node"关联的节点的入度减1;

        // 若减1之后,该节点的入度为0;则将该节点添加到队列中。

        while(node != NULL)

        {

            // 将节点(序号为node->ivex)的入度减1。

            ins[node->ivex]--;

            // 若节点的入度为0,则将其"入队列"

            if( ins[node->ivex] == 0)

                queue[rear++] = node->ivex;  // 入队列



            node = node->nextEdge;

        }

    }



    if(index != mVexNum)

    {

        cout << "Graph has a cycle" << endl;

        delete queue;

        delete ins;

        delete tops;

        return 1;

    }



    // 打印拓扑排序结果

    cout << "== TopSort: ";

    for(i = 0; i < mVexNum; i ++)

        cout << tops[i] << " ";

    cout << endl;



    delete queue;

    delete ins;

    delete tops;



    return 0;

}

说明:
(01) queue的作用就是用来存储没有依赖顶点的顶点。它与前面所说的Q相对应。
(02) tops的作用就是用来存储排序结果。它与前面所说的T相对应。

拓扑排序的完整源码和测试程序

拓扑排序源码(ListDG.cpp)

你可能感兴趣的:(C++)