Wordcount on YARN 一个MapReduce示例

Hadoop YARN版本:2.2.0

关于hadoop yarn的环境搭建可以参考这篇博文:Hadoop 2.0安装以及不停集群加datanode

 

hadoop hdfs yarn伪分布式运行,有如下进程

1320 DataNode
1665 ResourceManager 1771 NodeManager 1195 NameNode 1487 SecondaryNameNode

 

写一个mapreduce示例,在yarn上跑,wordcount数单词示例

Wordcount on YARN 一个MapReduce示例代码在github上:https://github.com/huahuiyang/yarn-demo

步骤一

我们要处理的输入如下,每行包含一个或多个单词,空格分开。可以用hadoop fs -put ... 把本地文件放到hdfs上去,方便mapreduce程序读取

hadoop yarn

mapreduce

hello redis

java hadoop

hello world

here we go

wordcount程序希望完成数单词任务,输出格式是 <单词  出现次数>

 

步骤二

新建一个工程,工程结构如下,这个是个maven管理的工程

Wordcount on YARN 一个MapReduce示例

源代码如下:

pom.xml文件



<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

    <modelVersion>4.0.0</modelVersion>

    <groupId>hadoop-yarn</groupId>

    <artifactId>hadoop-demo</artifactId>

    <version>0.0.1-SNAPSHOT</version>



    <dependencies>

        <dependency>

            <groupId>org.apache.hadoop</groupId>

            <artifactId>hadoop-mapreduce-client-core</artifactId>

            <version>2.1.1-beta</version>

        </dependency>

        <dependency>

            <groupId>org.apache.hadoop</groupId>

            <artifactId>hadoop-common</artifactId>

            <version>2.1.1-beta</version>

        </dependency>

        <dependency>

            <groupId>org.apache.hadoop</groupId>

            <artifactId>hadoop-mapreduce-client-common</artifactId>

            <version>2.1.1-beta</version>

        </dependency>

        <dependency>

            <groupId>org.apache.hadoop</groupId>

            <artifactId>hadoop-mapreduce-client-jobclient</artifactId>

            <version>2.1.1-beta</version>

        </dependency>

    </dependencies>

</project>

 

package com.yhh.mapreduce.wordcount;

import java.io.IOException;



import org.apache.hadoop.io.*;

import org.apache.hadoop.mapred.*;



public class WordCountMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text,IntWritable>  {



    @Override

    public void map(LongWritable key, Text value,

            OutputCollector<Text, IntWritable> output, Reporter reporter)

            throws IOException {

        

        String line = value.toString();

        if(line != null) {

            String[] words = line.split(" ");

            for(String word:words) {

                output.collect(new Text(word), new IntWritable(1));

            }

        }

        

    }



}

 

package com.yhh.mapreduce.wordcount;



import java.io.IOException;

import java.util.Iterator;



import org.apache.hadoop.io.*;

import org.apache.hadoop.mapred.*;



public class WordCountReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable>{



    @Override

    public void reduce(Text key, Iterator<IntWritable> values,

            OutputCollector<Text, IntWritable> output, Reporter reporter)

            throws IOException {

        int count = 0;

        while(values.hasNext()) {

            values.next();

            count++;

        }

        output.collect(key, new IntWritable(count));

    }



}

 

package com.yhh.mapreduce.wordcount;



import java.io.IOException;



import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapred.JobClient;



public class WordCount {

    public static void main(String[] args) throws IOException {

        if(args.length != 2) {

            System.err.println("Error!");

            System.exit(1);

        }

        

        JobConf conf = new JobConf(WordCount.class);

        conf.setJobName("word count mapreduce demo");

        

        conf.setMapperClass(WordCountMapper.class);

        conf.setReducerClass(WordCountReducer.class);

        conf.setOutputKeyClass(Text.class);

        conf.setOutputValueClass(IntWritable.class);

        

        FileInputFormat.addInputPath(conf, new Path(args[0]));

        FileOutputFormat.setOutputPath(conf, new Path(args[1]));

        

        JobClient.runJob(conf);

        

    }



}

 

步骤三

打包发布成jar,右击java工程,选择Export...,然后选择jar file生成目录,这边发布成wordcount.jar,然后上传到hadoop集群

[root@hadoop-namenodenew ~]# ll wordcount.jar 

-rw-r--r--. 1 root root 4401 6月   1 22:05 wordcount.jar

运行mapreduce任务。命令如下

hadoop jar ~/wordcount.jar com.yhh.mapreduce.wordcount.WordCount data.txt /wordcount/result

可以用hadoop job -list看任务运行情况,运行成功大概会有如下输出

14/06/01 22:06:25 INFO mapreduce.Job: The url to track the job: http://hadoop-namenodenew:8088/proxy/application_1401631066126_0003/

14/06/01 22:06:25 INFO mapreduce.Job: Running job: job_1401631066126_0003

14/06/01 22:06:33 INFO mapreduce.Job: Job job_1401631066126_0003 running in uber mode : false

14/06/01 22:06:33 INFO mapreduce.Job:  map 0% reduce 0%

14/06/01 22:06:40 INFO mapreduce.Job:  map 50% reduce 0%

14/06/01 22:06:41 INFO mapreduce.Job:  map 100% reduce 0%

14/06/01 22:06:47 INFO mapreduce.Job:  map 100% reduce 100%

14/06/01 22:06:48 INFO mapreduce.Job: Job job_1401631066126_0003 completed successfully

14/06/01 22:06:49 INFO mapreduce.Job: Counters: 43

 

然后mapreduce输出的任务结果如下,单词按照字典序排序

hadoop fs -cat /wordcount/result/part-00000



go    1

hadoop    2

hello    2

here    1

java    1

mapreduce    1

redis    1

we    1

world    1

yarn    1

 

你可能感兴趣的:(mapreduce)