- Python项目如何读取nacos配置
Tizzy JJ
服务器pythonpycharm
目录一、nacos配置示例二、python读取nacos配置一、nacos配置示例在Nacos中创建yaml格式配置(DataID:your-data-id)#Nacos配置文件(your-data-id.yaml)app:env:productionversion:1.2.3apis:deepseek:api_key:"sk-your-deepseek-key-here"timeout:30da
- 【零基础学AI】第33讲:强化学习基础 - 游戏AI智能体
1989
0基础学AI人工智能游戏transformer分类深度学习神经网络
本节课你将学到理解强化学习的基本概念和框架掌握Q-learning算法原理使用Python实现贪吃蛇游戏AI训练能够自主玩游戏的智能体开始之前环境要求Python3.8+PyTorch2.0+Gymnasium(原OpenAIGym)NumPyMatplotlib推荐使用JupyterNotebook进行实验前置知识Python基础编程(第1-8讲)基本数学概念(函数、导数)神经网络基础(第23讲
- 【AI论文】Skywork-Reward-V2:通过人机协同实现偏好数据整理的规模化扩展
摘要:尽管奖励模型(RewardModels,RMs)在基于人类反馈的强化学习(ReinforcementLearningfromHumanFeedback,RLHF)中发挥着关键作用,但当前最先进的开源奖励模型在大多数现有评估基准上表现欠佳,无法捕捉人类复杂且微妙的偏好谱系。即便采用先进训练技术的方法也未能显著提升性能。我们推测,这种脆弱性主要源于偏好数据集的局限性——这些数据集往往范围狭窄、标
- 03 数据可视化的世界非常广阔,除了已提到的类型,还有许多更细分或前沿的可视化形式。
晨曦543210
信息可视化人工智能
十五、机器学习与数据科学专用图表特征重要性图(FeatureImportancePlot)用途:展示机器学习模型中各特征对预测结果的贡献度。示例:随机森林模型中影响房价预测的关键因素。混淆矩阵热力图(ConfusionMatrixHeatmap)用途:分类模型性能评估,显示预测结果与真实标签的对比。示例:疾病诊断模型的真阳性/假阳性分布。学习曲线(LearningCurve)用途:分析模型训练过程
- 当争论者还在讨论AI的边界,实践者早已用这些技术解决实际问题
渡难繁辰
人工智能拥抱AI人工智能ai
——普通人参与AI革命的关键路径一、AI应用五大核心组件(通俗拆解版)1️⃣LLM:AI的「决策核心」本质:大型语言模型(如DeepSeek、通义千问),具备语言理解与生成能力能力边界:✅处理文本类任务(写作/翻译/摘要)❌无法获取实时信息(如最新股价)⚠️存在“幻觉”(虚构信息)风险案例对比:问:“鲁迅和周树人什么关系?”基础LLM:“两位都是著名作家”(错误)增强版LLM:“周树人是鲁迅本名”
- 全球 AI HR 浪潮下的中国实践:从效率革命到战略重构
weixin_54980836
人工智能重构
一、全球AIHR的技术跃迁与价值重构在DeepSeek、ChatGPT引发的生成式AI革命中,人力资源管理领域正经历着从“工具替代”到“认知重构”的范式转变。Gartner《2025年人力资源技术趋势报告》指出,AI在HR场景的应用已从简历筛选、薪资计算等基础效率工具,升级为支持组织战略决策的“数字伙伴”。这种转变的底层逻辑,源于大模型技术带来的三大突破:多模态交互能力:AI已能同时处理文本、语音
- SpringBoot多数据源动态切换方案:AbstractRoutingDataSource详解
fanxbl957
Webspringboot后端java
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人SpringBoot多数据源动态切换
- 构建企业级大模型运行监控体系:健康度五级指标与实战部署路径全解析
构建企业级大模型运行监控体系:健康度五级指标与实战部署路径全解析关键词:模型运行监控、健康度分级体系、DeepSeek、私有化部署、Prometheus、Grafana、异常检测、推理稳定性、性能观测、可视化大屏摘要:在DeepSeek大模型私有化部署的生产环境中,传统的“是否可用”监控已难以满足对模型稳定性、推理质量与异常风险的精细管理需求。为此,企业必须构建一套基于五级健康度模型的全维监控体系
- 企业级多模型服务架构(MaaS)私有部署实战指南:统一调度、模型隔离与服务编排全路径解析
观熵
架构人工智能私有化部署
企业级多模型服务架构(MaaS)私有部署实战指南:统一调度、模型隔离与服务编排全路径解析关键词:多模型服务架构、MaaS、私有化部署、模型管理、推理调度、模型编排、TritonInferenceServer、DeepSeek、模型隔离、企业级AI平台摘要:随着企业对多任务、多模型能力的需求日益增长,MaaS(Model-as-a-Service)架构已成为私有部署中的关键支撑技术之一。该文聚焦当前
- 【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
G皮T
#大语言模型人工智能LLM大语言模型chatgptdeepseekDeepSeek-R1DeepSeek-V3
ChatGPT、DeepSeek-R1、DeepSeek-V3辨析1.ChatGPT对比DeepSeek1.1技术相似点1.2主要差异1.3关键区别1.4如何选择1.5总结2.DeepSeek-R1对比DeepSeek-V32.1DeepSeek-R12.2DeepSeek-V32.3核心区别总结2.4如何选择3.R1和V3有什么含义3.1DeepSeekR1的"R"3.2DeepSeekV3的"
- AlphaEvolve:谷歌的算法进化引擎 | 从数学证明到芯片设计的AI自主发现新纪元
大千AI助手
人工智能Python#OTHER算法人工智能深度学习AlphaEvolvegooglegemini
AlphaEvolve:谷歌的算法进化引擎|从数学证明到芯片设计的AI自主发现新纪元——结合大语言模型与进化计算,重塑科学发现与工程优化的通用智能体本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!⚙️一、核心定义与技术架构AlphaEvolve是由谷歌DeepMind开发的通用科学AI智能体,其核心
- The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models
UnknownBody
LLMDailyCausalandReasoning语言模型人工智能
文章主要内容总结本文围绕大推理模型(LRMs)的推理能力展开系统研究,通过可控谜题环境分析其在不同问题复杂度下的表现,揭示其优势与局限性:研究背景与问题:当前LRMs(如OpenAIo1/o3、DeepSeek-R1等)虽在推理基准测试中表现提升,但对其底层能力、缩放特性及局限性的理解不足。现有评估依赖数学和编码基准,存在数据污染且缺乏对推理轨迹的深度分析。研究方法:采用可控谜题环境(如汉诺塔、跳
- DeepSeek 帮助自己的工作
引言简述人工智能助手在职场中的普及趋势DeepSeek作为智能创作助手的核心功能概述DeepSeek的核心能力信息检索与整合:基于用户意图精准搜索并生成答案多场景应用:技术文档撰写、数据分析、代码生成等交互优化:遵循用户指定的格式与内容规范职场应用场景与实操案例技术文档撰写自动生成API文档框架根据需求补充技术细节示例代码块与公式的规范化输出数据分析支持快速检索行业数据并生成可视化建议数学建模中的
- 【DeepSeek实战】17、MCP地图服务集成全景指南:高德、百度、腾讯三大平台接入实战
引言:为什么MCP是地图服务的下一代革命?在数字化时代,位置服务已成为电商、出行、物流等行业的核心基础设施。但单一地图服务商的局限性日益凸显:某外卖平台因高德地图API突发故障导致30分钟订单配送延迟,某打车软件因百度地图路线规划偏差引发用户投诉激增,某物流企业因腾讯地图POI数据不全导致仓库定位错误……这些问题的根源,在于缺乏一套能统一管理多地图服务的智能平台。MCP(地图控制平台)应运而生。它
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- DeepSeek API 完整调用指南:从基础到高级应用实战
独立开发者阿乐
原创DeepseekapiAPI调用api接口核心能力模型DeepSeekAPI
文章目录DeepSeekAPI调用全流程详解:从入门到生产级实践1.DeepSeekAPI概述1.1DeepSeekAPI核心能力1.2API版本与计费2.API调用准备工作2.1注册与认证2.2环境准备2.3API密钥管理3.基础API调用实现3.1RESTfulAPI调用3.2流式响应处理4.高级API使用技巧4.1多轮对话管理4.2文件上传与处理5.生产环境最佳实践5.1错误处理与重试机制5
- DeepSeek API生产级集成策略:性能优化与成本控制指南
独立开发者阿乐
原创性能优化DeepSeekAPIAPI集成API核心服务层封装
文章目录深度集成DeepSeekAPI:从接入到生产级应用实践引言一、DeepSeekAPI概述1.1DeepSeekAPI核心能力1.2API版本与定价二、项目集成方案设计2.1技术选型考量2.2架构设计模式2.2.1直接调用模式2.2.2服务层封装模式2.2.3异步微服务模式三、核心实现与优化3.1认证与安全3.1.1API密钥管理3.2性能优化技巧3.2.1流式响应处理3.2.2批量请求处理
- deepin uos 安装 vscode 开发工具提示缺失依赖包 libxkbfile1 的解决方案
deepinuos安装vscode开发工具提示缺失依赖包libxkbfile1的解决方案近日在deepin系统上安装vscode遇到如下报错:解决方法如下:下载高版本libxkbfile1安装高版本libxkbfile1安装vscode下载高版本libxkbfile1wgethttps://mirrors.ustc.edu.cn/debian/pool/main/libx/libxkbfile/l
- 优麒麟安装向日葵遇到的依赖缺少问题 未安装软件包 libwebkitgtk-3.0-0
orange_cy
linux
错误提示:未安装软件包libwebkitgtk-3.0-0在处理时有错误发生:sunloginclient具体错误如下图:1.前往官网下载向日葵软件官网地址:向日葵远程控制软件_app下载_视频监控软件_远程开机软件下载-Oray贝锐科技向日葵1.根据所使用的平台选择的位置linux2.选择:Ubuntu/Deepin下载最新文件安装包:SunloginClient-10.1.1.38139_am
- 多智能体深度强化学习:一项综述 Multi-agent deep reinforcement learning: a survey
资源存储库
笔记
Abstract抽象Theadvancesinreinforcementlearninghaverecordedsublimesuccessinvariousdomains.Althoughthemulti-agentdomainhasbeenovershadowedbyitssingle-agentcounterpartduringthisprogress,multi-agentreinforc
- ReAct (Reason and Act) OR 强化学习(Reinforcement Learning, RL)
SugarPPig
人工智能人工智能
这个问题触及了现代AI智能体(Agent)构建的两种核心思想。简单来说,ReAct是一种“调用专家”的模式,而强化学习(RL)是一种“从零试错”的模式。为了让你更清晰地理解,我们从一个生动的比喻开始,然后进行详细的对比。一个生动的比喻想象一下你要完成一项复杂的任务,比如“策划一场完美的生日派对”。ReAct的方式(像一位经验丰富的活动策划师)你是一位知识渊博的专家(大语言模型LLM)。你首先会思考
- DeepSeek 部署中的常见问题及解决方案
tonngw
后端
技术文章大纲:DeepSeek部署中的常见问题及解决方案引言简要介绍DeepSeek及其应用场景,说明部署过程中可能遇到的挑战。环境配置问题硬件兼容性问题:GPU型号、驱动版本不匹配的解决方案。依赖库冲突:Python版本、CUDA/cuDNN不兼容的排查方法。虚拟环境配置:Anaconda或Docker环境的最佳实践。模型加载与初始化问题预训练模型下载失败:网络代理设置、手动下载替代方案。显存不
- Python机器学习入门必看!从原理到实战,手把手教你线性回归模型
小张在编程
python机器学习线性回归
引言在人工智能浪潮席卷全球的今天,机器学习(MachineLearning)早已不再是实验室的“黑科技”——打开购物APP的“猜你喜欢”、输入搜索词后的“相关推荐”、甚至天气预报中的温度预测,背后都有机器学习模型的身影。而在线性回归(LinearRegression)作为机器学习中最基础、最经典的监督学习模型,堪称机器学习的“敲门砖”。本文将从原理到实战,带你彻底掌握这一核心算法。一、机器学习的“
- AI办公Agent之Skywork Super Agents
NeilNiu
AI+开源项目人工智能
5月22日,昆仑万维科技股份有限公司(以下简称“昆仑万维”)面向全球市场同步发布天工超级智能体(SkyworkSuperAgents)。官网地址:https://www.tiangong.cn/这个工具主要采用了AIagent架构和DeepResearch技术,一站式生成文档、PPT、表格(excel)、网页、播客和音视频多模态内容。它具有强大的DeepResearch能力,在GAIA榜单排名全球
- 满血DeepSeek加持的AlphaGPT,助力高文律师事务所全面拥抱AI
2025年初,中国团队精心雕琢的通用大模型DeepSeek凭借其创新的架构优化以及深入的数据挖掘技术,在逻辑推理、多轮对话和知识搜索等关键领域大放异彩,其为诸多垂直领域,特别是法律行业的智能化转型,开拓了全新的方向。2月8日,法律科技领域的领军者iCourt将旗下的AlphaGPT与DeepSeek深度融合,重磅推出业内首款“DeepSeek+法律专业”AI大模型。这一创举彻底打破了传统法律智能工
- AI人工智能助力联邦学习通信效率优化的解决方案
AI智能应用
人工智能ai
AI驱动的联邦学习通信效率优化:从理论到实践的全面解决方案元数据框架标题AI驱动的联邦学习通信效率优化:从理论到实践的全面解决方案关键词联邦学习(FederatedLearning)、通信优化(CommunicationEfficiency)、AI赋能(AI-Enabled)、参数压缩(ParameterCompression)、客户端选择(ClientSelection)、联邦蒸馏(Federa
- 大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
在人工智能的浪潮之巅,我们总会惊叹于GPT-4、Llama3.1、Qwen2.5这些顶尖大语言模型(LLM)所展现出的惊人能力。它们似乎无所不知,能写诗、能编程、能进行复杂的逻辑推理。一个自然而然的问题是:它们是如何“学”会这一切的?大多数人会回答:“用海量数据喂出来的。”这个答案只说对了一半。如果你认为只要把互联网上能找到的所有数据(比如15万亿个token)随机打乱,然后“一锅烩”地喂给模型,
- 人工智能学习资源
Hemy08
人工智能学习
无机器学习基础:https://www.coursera.org/learn/machine-learning有机器学习基础:MachineYearning深度学习入门:https://www.coursera.org/learn/neural-networks-deep-learning
- 【DeepSeek开源周】Day 4:DualPipe & EPLB 学习笔记
蓝海星梦
DeepSeek开源周探秘开源学习笔记人工智能云计算分布式
目录一、DualPipe&EPLB概述二、DualPipe详解1.流水线并行策略(1)F-then-B策略(2)1F1B策略2.朴素流水线并行3.GPipe微批次流水线并行4.PipeStream5.ZBPP6.DualPipe7.DualPipeV8.流水线并行方案对比三、EPLB详解1.专家并行(EP)2.EPLB冗余专家策略3.负载均衡策略(1)分层负载均衡(2)全局负载均衡(3)接口和示例
- 蓝桥杯2023国赛-01游戏
weixin_66009678
蓝桥杯游戏深度优先
本题的dfs还是比较复杂的,需要兼顾的条件比较多。这一题是我看了其他人的题才写出来的,菜菜捏,哈哈哈哈哈!!!然后这一题如何确保行之前不相同,是通过二进制来的,具体的在代码中给出了详解。直接上代码://https://www.lanqiao.cn/problems/17100/learning/?page=1&first_category_id=1&sort=students_count&tags
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi