从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章分享了循环神经网络RNN的原理知识,并采用Keras实现手写数字识别的RNN分类案例及可视化呈现。这篇文章作者将带领大家用Keras实现RNN和LSTM的文本分类算法,并与传统的机器学习分类算法进行对比实验。基础性文章,希望对您有所帮助!同时,如果文章中存在错误或不足之处,也欢迎与我探讨,作者也是初学者,非常希望您的交流能促进共同成长。感谢参考文献中基基伟老师、知乎老师们的文章,共勉~
本专栏主要结合作者之前的博客、AI经验和相关视频及论文介绍,后面随着深入会讲解更多的Python人工智能案例及应用。基础性文章,希望对您有所帮助,如果文章中存在错误或不足之处,还请海涵~作者作为人工智能的菜鸟,希望大家能与我在这一笔一划的博客中成长起来。写了这么多年博客,尝试第一个付费专栏,但更多博客尤其基础性文章,还是会继续免费分享,但该专栏也会用心撰写,望对得起读者,共勉!
代码下载地址:https://github.com/eastmountyxz/AI-for-TensorFlow
代码下载地址:https://github.com/eastmountyxz/AI-for-Keras
博客下载地址:https://github.com/eastmountyxz/CSDNBlog-AI-for-Python
同时推荐前面作者另外五个Python系列文章。从2014年开始,作者主要写了三个Python系列文章,分别是基础知识、网络爬虫和数据分析。2018年陆续增加了Python图像识别和Python人工智能专栏。
前文:
[Python人工智能] 一.TensorFlow2.0环境搭建及神经网络入门
[Python人工智能] 二.TensorFlow基础及一元直线预测案例
[Python人工智能] 三.TensorFlow基础之Session、变量、传入值和激励函数
[Python人工智能] 四.TensorFlow创建回归神经网络及Optimizer优化器
[Python人工智能] 五.Tensorboard可视化基本用法及绘制整个神经网络
[Python人工智能] 六.TensorFlow实现分类学习及MNIST手写体识别案例
[Python人工智能] 七.什么是过拟合及dropout解决神经网络中的过拟合问题
[Python人工智能] 八.卷积神经网络CNN原理详解及TensorFlow编写CNN
[Python人工智能] 九.gensim词向量Word2Vec安装及《庆余年》中文短文本相似度计算
[Python人工智能] 十.Tensorflow+Opencv实现CNN自定义图像分类案例及与机器学习KNN图像分类算法对比
[Python人工智能] 十一.Tensorflow如何保存神经网络参数
[Python人工智能] 十二.循环神经网络RNN和LSTM原理详解及TensorFlow编写RNN分类案例
[Python人工智能] 十三.如何评价神经网络、loss曲线图绘制、图像分类案例的F值计算
[Python人工智能] 十四.循环神经网络LSTM RNN回归案例之sin曲线预测
[Python人工智能] 十五.无监督学习Autoencoder原理及聚类可视化案例详解
[Python人工智能] 十六.Keras环境搭建、入门基础及回归神经网络案例
[Python人工智能] 十七.Keras搭建分类神经网络及MNIST数字图像案例分析
[Python人工智能] 十八.Keras搭建卷积神经网络及CNN原理详解
[Python人工智能] 十九.Keras搭建循环神经网络分类案例及RNN原理详解
《人工智能狂潮》读后感——什么是人工智能?(一)
补充一张深度学习的思维导图。
循环神经网络英文是Recurrent Neural Networks,简称RNN。RNN的本质概念是利用时序信息,在传统神经网络中,假设所有的输入(以及输出)都各自独立。但是,对于很多任务而言,这非常局限。举个例子,假如你想根据一句没说完的话,预测下一个单词,最好的办法就是联系上下文的信息。而RNN(循环神经网络)之所以是“循环”,是因为它们对序列的每个元素执行相同的任务,而每次的结果都独立于之前的计算。
假设有一组数据data0、data1、data2、data3,使用同一个神经网络预测它们,得到对应的结果。如果数据之间是有关系的,比如做菜下料的前后步骤,英文单词的顺序,如何让数据之间的关联也被神经网络学习呢?这就要用到——RNN。
比如存在ABCD数字,需要预测下一个数字E,会根据前面ABCD顺序进行预测,这就称为记忆。预测之前,需要回顾以前的记忆有哪些,再加上这一步新的记忆点,最终输出output,循环神经网络(RNN)就利用了这样的原理。
首先,让我们想想人类是怎么分析事物之间的关联或顺序的。人类通常记住之前发生的事情,从而帮助我们后续的行为判断,那么是否能让计算机也记住之前发生的事情呢?
在分析data0时,我们把分析结果存入记忆Memory中,然后当分析data1时,神经网络(NN)会产生新的记忆,但此时新的记忆和老的记忆没有关联,如上图所示。在RNN中,我们会简单的把老记忆调用过来分析新记忆,如果继续分析更多的数据时,NN就会把之前的记忆全部累积起来。
下面是一个典型的RNN结果模型,按照时间点t-1、t、t+1,每个时刻有不同的x,每次计算会考虑上一步的state和这一步的x(t),再输出y值。在该数学形式中,每次RNN运行完之后都会产生s(t),当RNN要分析x(t+1)时,此刻的y(t+1)是由s(t)和s(t+1)共同创造的,s(t)可看作上一步的记忆。多个神经网络NN的累积就转换成了循环神经网络,其简化图如下图的左边所示。例如,如果序列中的句子有5个单词,那么,横向展开网络后将有五层神经网络,一层对应一个单词。
总之,只要你的数据是有顺序的,就可以使用RNN,比如人类说话的顺序,电话号码的顺序,图像像素排列的顺序,ABC字母的顺序等。RNN常用于自然语言处理、机器翻译、语音识别、图像识别等领域。
文本分类旨在对文本集按照一定的分类体系或标准进行自动分类标记,属于一种基于分类体系的自动分类。文本分类最早可以追溯到上世纪50年代,那时主要通过专家定义规则来进行文本分类;80年代出现了利用知识工程建立的专家系统;90年代开始借助于机器学习方法,通过人工特征工程和浅层分类模型来进行文本分类。现在多采用词向量以及深度神经网络来进行文本分类。
牛亚峰老师将传统的文本分类流程归纳如下图所示。在传统的文本分类中,基本上大部分机器学习方法都在文本分类领域有所应用。主要包括:
利用Keras框架进行文本分类的基本流程如下:
注意,如果使用TFIDF而非词向量进行文档表示,则直接分词去停后生成TFIDF矩阵后输入模型。本文将采用词向量、TFIDF两种方式进行实验。
深度学习文本分类方法包括:
推荐牛亚峰老师的文章:基于 word2vec 和 CNN 的文本分类 :综述 & 实践
推荐作者之前的文章:[python数据挖掘课程] 二十一.朴素贝叶斯分类器详解及中文文本舆情分析。数据集采用基基伟老师的自定义文本,共21行数据,包括2类(小米手机、小米粥)。其基本流程是:
完整代码如下:
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 28 22:10:20 2020
@author: Eastmount CSDN
"""
from jieba import lcut
#--------------------------------载入数据及预处理-------------------------------
data = [
[0, '小米粥是以小米作为主要食材熬制而成的粥,口味清淡,清香味,具有简单易制,健胃消食的特点'],
[0, '煮粥时一定要先烧开水然后放入洗净后的小米'],
[0, '蛋白质及氨基酸、脂肪、维生素、矿物质'],
[0, '小米是传统健康食品,可单独焖饭和熬粥'],
[0, '苹果,是水果中的一种'],
[0, '粥的营养价值很高,富含矿物质和维生素,含钙量丰富,有助于代谢掉体内多余盐分'],
[0, '鸡蛋有很高的营养价值,是优质蛋白质、B族维生素的良好来源,还能提供脂肪、维生素和矿物质'],
[0, '这家超市的苹果都非常新鲜'],
[0, '在北方小米是主要食物之一,很多地区有晚餐吃小米粥的习俗'],
[0, '小米营养价值高,营养全面均衡 ,主要含有碳水化合物'],
[0, '蛋白质及氨基酸、脂肪、维生素、盐分'],
[1, '小米、三星、华为,作为安卓三大手机旗舰'],
[1, '别再管小米华为了!魅族手机再曝光:这次真的完美了'],
[1, '苹果手机或将重陷2016年困境,但这次它无法再大幅提价了'],
[1, '三星想要继续压制华为,仅凭A70还不够'],
[1, '三星手机屏占比将再创新高,超华为及苹果旗舰'],
[1, '华为P30、三星A70爆卖,斩获苏宁最佳手机营销奖'],
[1, '雷军,用一张图告诉你:小米和三星的差距在哪里'],
[1, '小米米聊APP官方Linux版上线,适配深度系统'],
[1, '三星刚刚更新了自家的可穿戴设备APP'],
[1, '华为、小米跨界并不可怕,可怕的打不破内心的“天花板”'],
]
#中文分析
X, Y = [' '.join(lcut(i[1])) for i in data], [i[0] for i in data]
print(X)
print(Y)
#['煮粥 时 一定 要 先烧 开水 然后 放入 洗净 后 的 小米', ...]
#--------------------------------------计算词频------------------------------------
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
#将文本中的词语转换为词频矩阵
vectorizer = CountVectorizer()
#计算个词语出现的次数
X_data = vectorizer.fit_transform(X)
print(X_data)
#获取词袋中所有文本关键词
word = vectorizer.get_feature_names()
print('【查看单词】')
for w in word:
print(w, end = " ")
else:
print("\n")
#词频矩阵
print(X_data.toarray())
#将词频矩阵X统计成TF-IDF值
transformer = TfidfTransformer()
tfidf = transformer.fit_transform(X_data)
#查看数据结构 tfidf[i][j]表示i类文本中的tf-idf权重
weight = tfidf.toarray()
print(weight)
#--------------------------------------数据分析------------------------------------
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(weight, Y)
print(len(X_train), len(X_test))
print(len(y_train), len(y_test))
print(X_train)
#调用MultinomialNB分类器
clf = MultinomialNB().fit(X_train, y_train)
pre = clf.predict(X_test)
print("预测结果:", pre)
print("真实结果:", y_test)
print(classification_report(y_test, pre))
#--------------------------------------可视化分析------------------------------------
#降维绘制图形
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
pca = PCA(n_components=2)
newData = pca.fit_transform(weight)
print(newData)
L1 = [n[0] for n in newData]
L2 = [n[1] for n in newData]
plt.scatter(L1, L2, c=Y, s=200)
plt.show()
输出结果如下所示:
['小米粥 是 以 小米 作为 主要 食材 熬 制而成 的 粥 , 口味 清淡 , 清香味 , 具有 简单 易制 , 健胃 消食 的 特点',
'煮粥 时 一定 要 先烧 开水 然后 放入 洗净 后 的 小米',
'蛋白质 及 氨基酸 、 脂肪 、 维生素 、 矿物质',
...
'三星 刚刚 更新 了 自家 的 可 穿戴 设备 APP',
'华为 、 小米 跨界 并 不 可怕 , 可怕 的 打 不破 内心 的 “ 天花板 ”']
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
【查看单词】
2016 app linux p30 一定 一张 一种 三星 健康 ... 雷军 食品 食材 食物 魅族 鸡蛋
[[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
...
[0 0 1 ... 0 0 0]
[0 0 1 ... 0 0 0]
[0 0 0 ... 0 0 0]]
15 6
15 6
[[0. 0. 0. ... 0. 0. 0. ]
[0. 0. 0. ... 0. 0. 0.32161043]
[0. 0. 0. ... 0. 0. 0. ]
...
[0. 0.31077094 0. ... 0. 0. 0. ]
[0. 0. 0. ... 0. 0. 0. ]
[0.35882035 0. 0. ... 0. 0. 0. ]]
预测结果: [0 1 0 1 1 1]
真实结果: [0, 0, 0, 0, 1, 1]
precision recall f1-score support
0 1.00 0.50 0.67 4
1 0.50 1.00 0.67 2
accuracy 0.67 6
macro avg 0.75 0.75 0.67 6
weighted avg 0.83 0.67 0.67 6
绘制图形如下图所示:
该方法与前面不同之处是采用Word2Vec进行词向量计算,将每行数据集分词,并计算每个特征词的词向量,接着转换为词向量矩阵,比如15行数据,每行数据40个特征词,每个特征词用20维度的词向量表示,即(15, 40, 20)。同时,由于词向量存在负数,所以需要使用GaussianNB算法替代MultinomialNB算法。
Word2Vec详见作者前文:[Python人工智能] 九.gensim词向量Word2Vec安装及《庆余年》中文短文本相似度计算
完整代码如下:
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 28 22:10:20 2020
@author: Eastmount CSDN
"""
from jieba import lcut
from numpy import zeros
from gensim.models import Word2Vec
from sklearn.model_selection import train_test_split
from tensorflow.python.keras.preprocessing.sequence import pad_sequences
max_features = 20 #词向量维度
maxlen = 40 #序列最大长度
#--------------------------------载入数据及预处理-------------------------------
data = [
[0, '小米粥是以小米作为主要食材熬制而成的粥,口味清淡,清香味,具有简单易制,健胃消食的特点'],
[0, '煮粥时一定要先烧开水然后放入洗净后的小米'],
[0, '蛋白质及氨基酸、脂肪、维生素、矿物质'],
[0, '小米是传统健康食品,可单独焖饭和熬粥'],
[0, '苹果,是水果中的一种'],
[0, '粥的营养价值很高,富含矿物质和维生素,含钙量丰富,有助于代谢掉体内多余盐分'],
[0, '鸡蛋有很高的营养价值,是优质蛋白质、B族维生素的良好来源,还能提供脂肪、维生素和矿物质'],
[0, '这家超市的苹果都非常新鲜'],
[0, '在北方小米是主要食物之一,很多地区有晚餐吃小米粥的习俗'],
[0, '小米营养价值高,营养全面均衡 ,主要含有碳水化合物'],
[0, '蛋白质及氨基酸、脂肪、维生素、盐分'],
[1, '小米、三星、华为,作为安卓三大手机旗舰'],
[1, '别再管小米华为了!魅族手机再曝光:这次真的完美了'],
[1, '苹果手机或将重陷2016年困境,但这次它无法再大幅提价了'],
[1, '三星想要继续压制华为,仅凭A70还不够'],
[1, '三星手机屏占比将再创新高,超华为及苹果旗舰'],
[1, '华为P30、三星A70爆卖,斩获苏宁最佳手机营销奖'],
[1, '雷军,用一张图告诉你:小米和三星的差距在哪里'],
[1, '小米米聊APP官方Linux版上线,适配深度系统'],
[1, '三星刚刚更新了自家的可穿戴设备APP'],
[1, '华为、小米跨界并不可怕,可怕的打不破内心的“天花板”'],
]
#中文分析
X, Y = [lcut(i[1]) for i in data], [i[0] for i in data]
#划分训练集和预测集
X_train, X_test, y_train, y_test = train_test_split(X, Y)
#print(X_train)
print(len(X_train), len(X_test))
print(len(y_train), len(y_test))
"""['三星', '刚刚', '更新', '了', '自家', '的', '可', '穿戴', '设备', 'APP']"""
#--------------------------------Word2Vec词向量-------------------------------
word2vec = Word2Vec(X_train, size=max_features, min_count=1) #最大特征 最低过滤频次1
print(word2vec)
#映射特征词
w2i = {w:i for i, w in enumerate(word2vec.wv.index2word)}
print("【显示词语】")
print(word2vec.wv.index2word)
print(w2i)
"""['小米', '三星', '是', '维生素', '蛋白质', '及', 'APP', '氨基酸',..."""
"""{',': 0, '的': 1, '小米': 2, '、': 3, '华为': 4, ....}"""
#词向量计算
vectors = word2vec.wv.vectors
print("【词向量矩阵】")
print(vectors.shape)
print(vectors)
#自定义函数-获取词向量
def w2v(w):
i = w2i.get(w)
return vectors[i] if i else zeros(max_features)
#自定义函数-序列预处理
def pad(ls_of_words):
a = [[w2v(i) for i in x] for x in ls_of_words]
a = pad_sequences(a, maxlen, dtype='float')
return a
#序列化处理 转换为词向量
X_train, X_test = pad(X_train), pad(X_test)
print(X_train.shape)
print(X_test.shape)
"""(15, 40, 20) 15个样本 40个特征 每个特征用20词向量表示"""
#拉直形状 (15, 40, 20)=>(15, 40*20) (6, 40, 20)=>(6, 40*20)
X_train = X_train.reshape(len(y_train), maxlen*max_features)
X_test = X_test.reshape(len(y_test), maxlen*max_features)
print(X_train.shape)
print(X_test.shape)
#--------------------------------建模与训练-------------------------------
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
#调用GaussianNB分类器
clf = GaussianNB().fit(X_train, y_train)
pre = clf.predict(X_test)
print("预测结果:", pre)
print("真实结果:", y_test)
print(classification_report(y_test, pre))
输出结果如下所示:
15 6
15 6
Word2Vec(vocab=126, size=20, alpha=0.025)
【显示词语】
[',', '、', '小米', '的', '华为', '手机', '苹果', '维生素', 'APP', '官方', 'Linux', ... '安卓三大', '旗舰']
{',': 0, '、': 1, '小米': 2, '的': 3, '华为': 4, '手机': 5, '苹果': 6, ..., '安卓三大': 124, '旗舰': 125}
【词向量矩阵】
(126, 20)
[[ 0.02041552 -0.00929706 -0.00743623 ... -0.00246041 -0.00825108
0.02341811]
[-0.00256093 -0.01301112 -0.00697959 ... -0.00449076 -0.00551124
-0.00240511]
[ 0.01535473 0.01690796 -0.00262145 ... -0.01624218 0.00871249
-0.01159615]
...
[ 0.00631155 0.00369085 -0.00382834 ... 0.02468265 0.00945442
-0.0155745 ]
[-0.01198495 0.01711261 0.01097644 ... 0.01003117 0.01074963
0.01960118]
[ 0.00450704 -0.01114052 0.0186879 ... 0.00804681 0.01060277
0.01836049]]
(15, 40, 20)
(6, 40, 20)
(15, 800)
(6, 800)
预测结果: [1 1 1 0 1 0]
真实结果: [0, 1, 1, 0, 1, 0]
precision recall f1-score support
0 1.00 0.67 0.80 3
1 0.75 1.00 0.86 3
accuracy 0.83 6
macro avg 0.88 0.83 0.83 6
weighted avg 0.88 0.83 0.83 6
(1) IMDB数据集
Keras框架为我们提供了一些常用的内置数据集。比如,图像识别领域的手写识别MNIST数据集、文本分类领域的电影影评imdb数据集等等。这些数据库可以用一条代码就可以调用:
这些数据集是通过https://s3.amazonaws.com进行下载的,但有时该网站不能使用,需要下载数据至本地,再进行调用分析。Keras数据集百度云链接:
作者将下载后的数据放在C:\Users\Administrator.keras\datasets文件夹下,如下图所示。
该数据集是互联网电影资料库(Internet Movie Database,简称IMDb),它是一个关于电影演员、电影、电视节目、电视明星和电影制作的在线数据库。
imdb.npz文件中数据和格式如下:
[list([1, 14, 22, 16, 43, 530, 973, 1622, 1385, 65, 458, 4468, 66, 3941, 4, 173, 36, 256, 5, 25, 100, 43, 838, 112, 50, 670, 2, 9, 35, 480, 284, 5, 150, 4, 172, ...])
list([1, 194, 1153, 194, 8255, 78, 228, 5, 6, 1463, 4369, 5012, 134, 26, 4, 715, 8, 118, 1634, 14, 394, 20, 13, 119, 954, 189, 102, 5, 207, 110, 3103, 21, 14, 69, ...])
list([1, 14, 47, 8, 30, 31, 7, 4, 249, 108, 7, 4, 5974, 54, 61, 369, 13, 71, 149, 14, 22, 112, 4, 2401, 311, 12, 16, 3711, 33, 75, 43, 1829, 296, 4, 86, 320, 35, ...])
...
list([1, 11, 6, 230, 245, 6401, 9, 6, 1225, 446, 2, 45, 2174, 84, 8322, 4007, 21, 4, 912, 84, 14532, 325, 725, 134, 15271, 1715, 84, 5, 36, 28, 57, 1099, 21, 8, 140, ...])
list([1, 1446, 7079, 69, 72, 3305, 13, 610, 930, 8, 12, 582, 23, 5, 16, 484, 685, 54, 349, 11, 4120, 2959, 45, 58, 1466, 13, 197, 12, 16, 43, 23, 2, 5, 62, 30, 145, ...])
list([1, 17, 6, 194, 337, 7, 4, 204, 22, 45, 254, 8, 106, 14, 123, 4, 12815, 270, 14437, 5, 16923, 12255, 732, 2098, 101, 405, 39, 14, 1034, 4, 1310, 9, 115, 50, 305, ...])] train sequences
每个list是一个句子,句子中每个数字表示单词的编号。那么,怎么获取编号对应的单词?此时需要使用imdb_word_index.json文件,其文件格式如下:
{"fawn": 34701, "tsukino": 52006,..., "paget": 18509, "expands": 20597}
共有88584个单词,采用key-value格式存放,key代表单词,value代表(单词)编号。词频(单词在语料中出现次数)越高编号越小,例如, “the:1”出现次数最高,编号为1。
(2) 序列预处理
在进行深度学习向量转换过程中,通常需要使用pad_sequences()序列填充。其基本用法如下:
keras.preprocessing.sequence.pad_sequences(
sequences,
maxlen=None,
dtype='int32',
padding='pre',
truncating='pre',
value=0.
)
参数含义如下:
基本用法如下所示:
from keras.preprocessing.sequence import pad_sequences
print(pad_sequences([[1, 2, 3], [1]], maxlen=2))
"""[[2 3] [0 1]]"""
print(pad_sequences([[1, 2, 3], [1]], maxlen=3, value=9))
"""[[1 2 3] [9 9 1]]"""
print(pad_sequences([[2,3,4]], maxlen=10))
"""[[0 0 0 0 0 0 0 2 3 4]]"""
print(pad_sequences([[1,2,3,4,5],[6,7]], maxlen=10))
"""[[0 0 0 0 0 1 2 3 4 5] [0 0 0 0 0 0 0 0 6 7]]"""
print(pad_sequences([[1, 2, 3], [1]], maxlen=2, padding='post'))
"""结束位置补: [[2 3] [1 0]]"""
print(pad_sequences([[1, 2, 3], [1]], maxlen=4, truncating='post'))
"""起始位置补: [[0 1 2 3] [0 0 0 1]]"""
在自然语言中一般和分词器一起使用。
>>> tokenizer.texts_to_sequences(["下 雨 我 加班"])
[[4, 5, 6, 7]]
>>> keras.preprocessing.sequence.pad_sequences(tokenizer.texts_to_sequences(["下 雨 我 加班"]), maxlen=20)
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 6, 7]],dtype=int32)
此时我们将通过词嵌入模型进行训练,具体流程包括:
完整代码如下:
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 28 17:08:28 2020
@author: Eastmount CSDN
"""
from keras.datasets import imdb #Movie Database
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense, Flatten, Embedding
#-----------------------------------定义参数-----------------------------------
max_features = 20000 #按词频大小取样本前20000个词
input_dim = max_features #词库大小 必须>=max_features
maxlen = 80 #句子最大长度
batch_size = 128 #batch数量
output_dim = 40 #词向量维度
epochs = 2 #训练批次
#--------------------------------载入数据及预处理-------------------------------
#数据获取
(trainX, trainY), (testX, testY) = imdb.load_data(path="imdb.npz", num_words=max_features)
print(trainX.shape, trainY.shape) #(25000,) (25000,)
print(testX.shape, testY.shape) #(25000,) (25000,)
#序列截断或补齐为等长
trainX = sequence.pad_sequences(trainX, maxlen=maxlen)
testX = sequence.pad_sequences(testX, maxlen=maxlen)
print('trainX shape:', trainX.shape)
print('testX shape:', testX.shape)
#------------------------------------创建模型------------------------------------
model = Sequential()
#词嵌入:词库大小、词向量维度、固定序列长度
model.add(Embedding(input_dim, output_dim, input_length=maxlen))
#平坦化: maxlen*output_dim
model.add(Flatten())
#输出层: 2分类
model.add(Dense(units=1, activation='sigmoid'))
#RMSprop优化器 二元交叉熵损失
model.compile('rmsprop', 'binary_crossentropy', ['acc'])
#训练
model.fit(trainX, trainY, batch_size, epochs)
#模型可视化
model.summary()
输出结果如下所示:
(25000,) (25000,)
(25000,) (25000,)
trainX shape: (25000, 80)
testX shape: (25000, 80)
Epoch 1/2
25000/25000 [==============================] - 2s 98us/step - loss: 0.6111 - acc: 0.6956
Epoch 2/2
25000/25000 [==============================] - 2s 69us/step - loss: 0.3578 - acc: 0.8549
Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_2 (Embedding) (None, 80, 40) 800000
_________________________________________________________________
flatten_2 (Flatten) (None, 3200) 0
_________________________________________________________________
dense_2 (Dense) (None, 1) 3201
=================================================================
Total params: 803,201
Trainable params: 803,201
Non-trainable params: 0
_________________________________________________________________
显示矩阵如下图所示:
RNN对IMDB电影数据集进行文本分类的完整代码如下所示:
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 28 17:08:28 2020
@author: Eastmount CSDN
"""
from keras.datasets import imdb #Movie Database
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense, Flatten, Embedding
from keras.layers import SimpleRNN
#-----------------------------------定义参数-----------------------------------
max_features = 20000 #按词频大小取样本前20000个词
input_dim = max_features #词库大小 必须>=max_features
maxlen = 40 #句子最大长度
batch_size = 128 #batch数量
output_dim = 40 #词向量维度
epochs = 3 #训练批次
units = 32 #RNN神经元数量
#--------------------------------载入数据及预处理-------------------------------
#数据获取
(trainX, trainY), (testX, testY) = imdb.load_data(path="imdb.npz", num_words=max_features)
print(trainX.shape, trainY.shape) #(25000,) (25000,)
print(testX.shape, testY.shape) #(25000,) (25000,)
#序列截断或补齐为等长
trainX = sequence.pad_sequences(trainX, maxlen=maxlen)
testX = sequence.pad_sequences(testX, maxlen=maxlen)
print('trainX shape:', trainX.shape)
print('testX shape:', testX.shape)
#-----------------------------------创建RNN模型-----------------------------------
model = Sequential()
#词嵌入 词库大小、词向量维度、固定序列长度
model.add(Embedding(input_dim, output_dim, input_length=maxlen))
#RNN Cell
model.add(SimpleRNN(units, return_sequences=True)) #返回序列全部结果
model.add(SimpleRNN(units, return_sequences=False)) #返回序列最尾结果
#输出层 2分类
model.add(Dense(units=1, activation='sigmoid'))
#模型可视化
model.summary()
#-----------------------------------建模与训练-----------------------------------
#激活神经网络
model.compile(optimizer = 'rmsprop', #RMSprop优化器
loss = 'binary_crossentropy', #二元交叉熵损失
metrics = ['accuracy'] #计算误差或准确率
)
#训练
history = model.fit(trainX,
trainY,
batch_size=batch_size,
epochs=epochs,
verbose=2,
validation_split=.1 #取10%样本作验证
)
#-----------------------------------预测与可视化-----------------------------------
import matplotlib.pyplot as plt
accuracy = history.history['accuracy']
val_accuracy = history.history['val_accuracy']
plt.plot(range(epochs), accuracy)
plt.plot(range(epochs), val_accuracy)
plt.show()
输出结果如下所示,三个Epoch训练。
Epoch可以用下图进行形象的表示。
(25000,) (25000,)
(25000,) (25000,)
trainX shape: (25000, 40)
testX shape: (25000, 40)
Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_2 (Embedding) (None, 40, 40) 800000
_________________________________________________________________
simple_rnn_3 (SimpleRNN) (None, 40, 32) 2336
_________________________________________________________________
simple_rnn_4 (SimpleRNN) (None, 32) 2080
_________________________________________________________________
dense_2 (Dense) (None, 1) 33
=================================================================
Total params: 804,449
Trainable params: 804,449
Non-trainable params: 0
_________________________________________________________________
Train on 22500 samples, validate on 2500 samples
Epoch 1/3
- 11s - loss: 0.5741 - accuracy: 0.6735 - val_loss: 0.4462 - val_accuracy: 0.7876
Epoch 2/3
- 14s - loss: 0.3572 - accuracy: 0.8430 - val_loss: 0.4928 - val_accuracy: 0.7616
Epoch 3/3
- 12s - loss: 0.2329 - accuracy: 0.9075 - val_loss: 0.5050 - val_accuracy: 0.7844
绘制的accuracy和val_accuracy曲线如下图所示:
第一步,导入文本数据集并转换为词向量。
data = [
[0, '小米粥是以小米作为主要食材熬制而成的粥,口味清淡,清香味,具有简单易制,健胃消食的特点'],
[0, '煮粥时一定要先烧开水然后放入洗净后的小米'],
[0, '蛋白质及氨基酸、脂肪、维生素、矿物质'],
[0, '小米是传统健康食品,可单独焖饭和熬粥'],
[0, '苹果,是水果中的一种'],
[0, '粥的营养价值很高,富含矿物质和维生素,含钙量丰富,有助于代谢掉体内多余盐分'],
[0, '鸡蛋有很高的营养价值,是优质蛋白质、B族维生素的良好来源,还能提供脂肪、维生素和矿物质'],
[0, '这家超市的苹果都非常新鲜'],
[0, '在北方小米是主要食物之一,很多地区有晚餐吃小米粥的习俗'],
[0, '小米营养价值高,营养全面均衡 ,主要含有碳水化合物'],
[0, '蛋白质及氨基酸、脂肪、维生素、盐分'],
[1, '小米、三星、华为,作为安卓三大手机旗舰'],
[1, '别再管小米华为了!魅族手机再曝光:这次真的完美了'],
[1, '苹果手机或将重陷2016年困境,但这次它无法再大幅提价了'],
[1, '三星想要继续压制华为,仅凭A70还不够'],
[1, '三星手机屏占比将再创新高,超华为及苹果旗舰'],
[1, '华为P30、三星A70爆卖,斩获苏宁最佳手机营销奖'],
[1, '雷军,用一张图告诉你:小米和三星的差距在哪里'],
[1, '小米米聊APP官方Linux版上线,适配深度系统'],
[1, '三星刚刚更新了自家的可穿戴设备APP'],
[1, '华为、小米跨界并不可怕,可怕的打不破内心的“天花板”'],
]
#中文分析
X, Y = [lcut(i[1]) for i in data], [i[0] for i in data]
#划分训练集和预测集
X_train, X_test, y_train, y_test = train_test_split(X, Y)
#print(X_train)
print(len(X_train), len(X_test))
print(len(y_train), len(y_test))
"""['三星', '刚刚', '更新', '了', '自家', '的', '可', '穿戴', '设备', 'APP']"""
#--------------------------------Word2Vec词向量-------------------------------
word2vec = Word2Vec(X_train, size=max_features, min_count=1) #最大特征 最低过滤频次1
print(word2vec)
#映射特征词
w2i = {w:i for i, w in enumerate(word2vec.wv.index2word)}
print("【显示词语】")
print(word2vec.wv.index2word)
print(w2i)
"""['小米', '三星', '是', '维生素', '蛋白质', '及', 'APP', '氨基酸',..."""
"""{',': 0, '的': 1, '小米': 2, '、': 3, '华为': 4, ....}"""
#词向量计算
vectors = word2vec.wv.vectors
print("【词向量矩阵】")
print(vectors.shape)
print(vectors)
#自定义函数-获取词向量
def w2v(w):
i = w2i.get(w)
return vectors[i] if i else zeros(max_features)
#自定义函数-序列预处理
def pad(ls_of_words):
a = [[w2v(i) for i in x] for x in ls_of_words]
a = pad_sequences(a, maxlen, dtype='float')
return a
#序列化处理 转换为词向量
X_train, X_test = pad(X_train), pad(X_test)
此时输出结果如下所示:
15 6
15 6
Word2Vec(vocab=120, size=20, alpha=0.025)
【显示词语】
[',', '的', '、', '小米', '三星', '是', '维生素', '蛋白质', '及',
'脂肪', '华为', '苹果', '可', 'APP', '氨基酸', '在', '手机', '旗舰',
'矿物质', '主要', '有', '小米粥', '作为', '刚刚', '更新', '设备', ...]
{',': 0, '的': 1, '、': 2, '小米': 3, '三星': 4, '是': 5,
'维生素': 6, '蛋白质': 7, '及': 8, '脂肪': 9, '和': 10,
'华为': 11, '苹果': 12, '可': 13, 'APP': 14, '氨基酸': 15, ...}
【词向量矩阵】
(120, 20)
[[ 0.00219526 0.00936278 0.00390177 ... -0.00422463 0.01543128
0.02481441]
[ 0.02346811 -0.01520025 -0.00563479 ... -0.01656673 -0.02222313
0.00438196]
[-0.02253242 -0.01633896 -0.02209039 ... 0.01301584 -0.01016752
0.01147605]
...
[ 0.01793107 0.01912305 -0.01780855 ... -0.00109831 0.02460653
-0.00023512]
[-0.00599797 0.02155897 -0.01874896 ... 0.00149929 0.00200266
0.00988515]
[ 0.0050361 -0.00848463 -0.0235001 ... 0.01531716 -0.02348576
0.01051775]]
第二步,建立RNN神经网络结构,使用Bi-GRU模型,并进行训练与预测。
#--------------------------------建模与训练-------------------------------
model = Sequential()
#双向RNN
model.add(Bidirectional(GRU(units), input_shape=(maxlen, max_features)))
#输出层 2分类
model.add(Dense(units=1, activation='sigmoid'))
#模型可视化
model.summary()
#激活神经网络
model.compile(optimizer = 'rmsprop', #RMSprop优化器
loss = 'binary_crossentropy', #二元交叉熵损失
metrics = ['acc'] #计算误差或准确率
)
#训练
history = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs,
verbose=verbose, validation_data=(X_test, y_test))
#----------------------------------预测与可视化------------------------------
#预测
score = model.evaluate(X_test, y_test, batch_size=batch_size)
print('test loss:', score[0])
print('test accuracy:', score[1])
#可视化
acc = history.history['acc']
val_acc = history.history['val_acc']
# 设置类标
plt.xlabel("Iterations")
plt.ylabel("Accuracy")
#绘图
plt.plot(range(epochs), acc, "bo-", linewidth=2, markersize=12, label="accuracy")
plt.plot(range(epochs), val_acc, "gs-", linewidth=2, markersize=12, label="val_accuracy")
plt.legend(loc="upper left")
plt.title("RNN-Word2vec")
plt.show()
输出结果如下图所示,发现accuracy和val_accuracy值非常不理想。怎么解决呢?
神经网络模型和Epoch训练结果如下图所示:
这里补充一个知识点——EarlyStopping。
EarlyStopping是Callbacks的一种,callbacks用于指定在每个epoch开始和结束的时候进行哪种特定操作。Callbacks中有一些设置好的接口,可以直接使用,如acc、val_acc、loss和val_loss等。EarlyStopping则是用于提前停止训练的callbacks,可以达到当训练集上的loss不在减小(即减小的程度小于某个阈值)的时候停止继续训练。上面程序中,当我们loss不在减小时就可以调用Callbacks停止训练。
推荐文章:[深度学习] keras的EarlyStopping使用与技巧 - zwqjoy
最后给出该部分的完整代码:
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 28 22:10:20 2020
@author: Eastmount CSDN
"""
from jieba import lcut
from numpy import zeros
import matplotlib.pyplot as plt
from gensim.models import Word2Vec
from sklearn.model_selection import train_test_split
from tensorflow.python.keras.preprocessing.sequence import pad_sequences
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, GRU, Bidirectional
from tensorflow.python.keras.callbacks import EarlyStopping
#-----------------------------------定义参数----------------------------------
max_features = 20 #词向量维度
units = 30 #RNN神经元数量
maxlen = 40 #序列最大长度
epochs = 9 #训练最大轮数
batch_size = 12 #每批数据量大小
verbose = 1 #训练过程展示
patience = 1 #没有进步的训练轮数
callbacks = [EarlyStopping('val_acc', patience=patience)]
#--------------------------------载入数据及预处理-------------------------------
data = [
[0, '小米粥是以小米作为主要食材熬制而成的粥,口味清淡,清香味,具有简单易制,健胃消食的特点'],
[0, '煮粥时一定要先烧开水然后放入洗净后的小米'],
[0, '蛋白质及氨基酸、脂肪、维生素、矿物质'],
[0, '小米是传统健康食品,可单独焖饭和熬粥'],
[0, '苹果,是水果中的一种'],
[0, '粥的营养价值很高,富含矿物质和维生素,含钙量丰富,有助于代谢掉体内多余盐分'],
[0, '鸡蛋有很高的营养价值,是优质蛋白质、B族维生素的良好来源,还能提供脂肪、维生素和矿物质'],
[0, '这家超市的苹果都非常新鲜'],
[0, '在北方小米是主要食物之一,很多地区有晚餐吃小米粥的习俗'],
[0, '小米营养价值高,营养全面均衡 ,主要含有碳水化合物'],
[0, '蛋白质及氨基酸、脂肪、维生素、盐分'],
[1, '小米、三星、华为,作为安卓三大手机旗舰'],
[1, '别再管小米华为了!魅族手机再曝光:这次真的完美了'],
[1, '苹果手机或将重陷2016年困境,但这次它无法再大幅提价了'],
[1, '三星想要继续压制华为,仅凭A70还不够'],
[1, '三星手机屏占比将再创新高,超华为及苹果旗舰'],
[1, '华为P30、三星A70爆卖,斩获苏宁最佳手机营销奖'],
[1, '雷军,用一张图告诉你:小米和三星的差距在哪里'],
[1, '小米米聊APP官方Linux版上线,适配深度系统'],
[1, '三星刚刚更新了自家的可穿戴设备APP'],
[1, '华为、小米跨界并不可怕,可怕的打不破内心的“天花板”'],
]
#中文分析
X, Y = [lcut(i[1]) for i in data], [i[0] for i in data]
#划分训练集和预测集
X_train, X_test, y_train, y_test = train_test_split(X, Y)
#print(X_train)
print(len(X_train), len(X_test))
print(len(y_train), len(y_test))
"""['三星', '刚刚', '更新', '了', '自家', '的', '可', '穿戴', '设备', 'APP']"""
#--------------------------------Word2Vec词向量-------------------------------
word2vec = Word2Vec(X_train, size=max_features, min_count=1) #最大特征 最低过滤频次1
print(word2vec)
#映射特征词
w2i = {w:i for i, w in enumerate(word2vec.wv.index2word)}
print("【显示词语】")
print(word2vec.wv.index2word)
print(w2i)
"""['小米', '三星', '是', '维生素', '蛋白质', '及', 'APP', '氨基酸',..."""
"""{',': 0, '的': 1, '小米': 2, '、': 3, '华为': 4, ....}"""
#词向量计算
vectors = word2vec.wv.vectors
print("【词向量矩阵】")
print(vectors.shape)
print(vectors)
#自定义函数-获取词向量
def w2v(w):
i = w2i.get(w)
return vectors[i] if i else zeros(max_features)
#自定义函数-序列预处理
def pad(ls_of_words):
a = [[w2v(i) for i in x] for x in ls_of_words]
a = pad_sequences(a, maxlen, dtype='float')
return a
#序列化处理 转换为词向量
X_train, X_test = pad(X_train), pad(X_test)
#--------------------------------建模与训练-------------------------------
model = Sequential()
#双向RNN
model.add(Bidirectional(GRU(units), input_shape=(maxlen, max_features)))
#输出层 2分类
model.add(Dense(units=1, activation='sigmoid'))
#模型可视化
model.summary()
#激活神经网络
model.compile(optimizer = 'rmsprop', #RMSprop优化器
loss = 'binary_crossentropy', #二元交叉熵损失
metrics = ['acc'] #计算误差或准确率
)
#训练
history = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs,
verbose=verbose, validation_data=(X_test, y_test))
#----------------------------------预测与可视化------------------------------
#预测
score = model.evaluate(X_test, y_test, batch_size=batch_size)
print('test loss:', score[0])
print('test accuracy:', score[1])
#可视化
acc = history.history['acc']
val_acc = history.history['val_acc']
# 设置类标
plt.xlabel("Iterations")
plt.ylabel("Accuracy")
#绘图
plt.plot(range(epochs), acc, "bo-", linewidth=2, markersize=12, label="accuracy")
plt.plot(range(epochs), val_acc, "gs-", linewidth=2, markersize=12, label="val_accuracy")
plt.legend(loc="upper left")
plt.title("RNN-Word2vec")
plt.show()
接着我们使用LSTM和Word2Vec进行文本分类。整个神经网络的结构很简单,第一层是嵌入层,将文本中的单词转化为向量;之后经过一层LSTM层,使用LSTM中最后一个时刻的隐藏状态;再接一个全连接层,即可完成整个网络的构造。
注意矩阵形状的变换。
完整代码如下所示:
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 28 22:10:20 2020
@author: Eastmount CSDN
"""
from jieba import lcut
from numpy import zeros
import matplotlib.pyplot as plt
from gensim.models import Word2Vec
from sklearn.model_selection import train_test_split
from tensorflow.python.keras.preprocessing.sequence import pad_sequences
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, LSTM, GRU, Embedding
from tensorflow.python.keras.callbacks import EarlyStopping
#-----------------------------------定义参数----------------------------------
max_features = 20 #词向量维度
units = 30 #RNN神经元数量
maxlen = 40 #序列最大长度
epochs = 9 #训练最大轮数
batch_size = 12 #每批数据量大小
verbose = 1 #训练过程展示
patience = 1 #没有进步的训练轮数
callbacks = [EarlyStopping('val_acc', patience=patience)]
#--------------------------------载入数据及预处理-------------------------------
data = [
[0, '小米粥是以小米作为主要食材熬制而成的粥,口味清淡,清香味,具有简单易制,健胃消食的特点'],
[0, '煮粥时一定要先烧开水然后放入洗净后的小米'],
[0, '蛋白质及氨基酸、脂肪、维生素、矿物质'],
[0, '小米是传统健康食品,可单独焖饭和熬粥'],
[0, '苹果,是水果中的一种'],
[0, '粥的营养价值很高,富含矿物质和维生素,含钙量丰富,有助于代谢掉体内多余盐分'],
[0, '鸡蛋有很高的营养价值,是优质蛋白质、B族维生素的良好来源,还能提供脂肪、维生素和矿物质'],
[0, '这家超市的苹果都非常新鲜'],
[0, '在北方小米是主要食物之一,很多地区有晚餐吃小米粥的习俗'],
[0, '小米营养价值高,营养全面均衡 ,主要含有碳水化合物'],
[0, '蛋白质及氨基酸、脂肪、维生素、盐分'],
[1, '小米、三星、华为,作为安卓三大手机旗舰'],
[1, '别再管小米华为了!魅族手机再曝光:这次真的完美了'],
[1, '苹果手机或将重陷2016年困境,但这次它无法再大幅提价了'],
[1, '三星想要继续压制华为,仅凭A70还不够'],
[1, '三星手机屏占比将再创新高,超华为及苹果旗舰'],
[1, '华为P30、三星A70爆卖,斩获苏宁最佳手机营销奖'],
[1, '雷军,用一张图告诉你:小米和三星的差距在哪里'],
[1, '小米米聊APP官方Linux版上线,适配深度系统'],
[1, '三星刚刚更新了自家的可穿戴设备APP'],
[1, '华为、小米跨界并不可怕,可怕的打不破内心的“天花板”'],
]
#中文分析
X, Y = [lcut(i[1]) for i in data], [i[0] for i in data]
#划分训练集和预测集
X_train, X_test, y_train, y_test = train_test_split(X, Y)
#print(X_train)
print(len(X_train), len(X_test))
print(len(y_train), len(y_test))
"""['三星', '刚刚', '更新', '了', '自家', '的', '可', '穿戴', '设备', 'APP']"""
#--------------------------------Word2Vec词向量-------------------------------
word2vec = Word2Vec(X_train, size=max_features, min_count=1) #最大特征 最低过滤频次1
print(word2vec)
#映射特征词
w2i = {w:i for i, w in enumerate(word2vec.wv.index2word)}
print("【显示词语】")
print(word2vec.wv.index2word)
print(w2i)
"""['小米', '三星', '是', '维生素', '蛋白质', '及', 'APP', '氨基酸',..."""
"""{',': 0, '的': 1, '小米': 2, '、': 3, '华为': 4, ....}"""
#词向量计算
vectors = word2vec.wv.vectors
print("【词向量矩阵】")
print(vectors.shape)
print(vectors)
#自定义函数-获取词向量
def w2v(w):
i = w2i.get(w)
return vectors[i] if i else zeros(max_features)
#自定义函数-序列预处理
def pad(ls_of_words):
a = [[w2v(i) for i in x] for x in ls_of_words]
a = pad_sequences(a, maxlen, dtype='float')
return a
#序列化处理 转换为词向量
X_train, X_test = pad(X_train), pad(X_test)
print(X_train.shape)
print(X_test.shape)
"""(15, 40, 20) 15个样本 40个特征 每个特征用20词向量表示"""
#拉直形状 (15, 40, 20)=>(15, 40*20) (6, 40, 20)=>(6, 40*20)
X_train = X_train.reshape(len(y_train), maxlen*max_features)
X_test = X_test.reshape(len(y_test), maxlen*max_features)
#--------------------------------建模与训练-------------------------------
model = Sequential()
#构建Embedding层 128代表Embedding层的向量维度
model.add(Embedding(max_features, 128))
#构建LSTM层
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
#构建全连接层
#注意上面构建LSTM层时只会得到最后一个节点的输出,如果需要输出每个时间点的结果需将return_sequences=True
model.add(Dense(units=1, activation='sigmoid'))
#模型可视化
model.summary()
#激活神经网络
model.compile(optimizer = 'rmsprop', #RMSprop优化器
loss = 'binary_crossentropy', #二元交叉熵损失
metrics = ['acc'] #计算误差或准确率
)
#训练
history = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs,
verbose=verbose, validation_data=(X_test, y_test))
#----------------------------------预测与可视化------------------------------
#预测
score = model.evaluate(X_test, y_test, batch_size=batch_size)
print('test loss:', score[0])
print('test accuracy:', score[1])
#可视化
acc = history.history['acc']
val_acc = history.history['val_acc']
# 设置类标
plt.xlabel("Iterations")
plt.ylabel("Accuracy")
#绘图
plt.plot(range(epochs), acc, "bo-", linewidth=2, markersize=12, label="accuracy")
plt.plot(range(epochs), val_acc, "gs-", linewidth=2, markersize=12, label="val_accuracy")
plt.legend(loc="upper left")
plt.title("LSTM-Word2vec")
plt.show()
输出结果如下所示,仍然不理想。
Model: "sequential_22"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_8 (Embedding) (None, None, 128) 2560
_________________________________________________________________
lstm_8 (LSTM) (None, 128) 131584
_________________________________________________________________
dense_21 (Dense) (None, 1) 129
=================================================================
Total params: 134,273
Trainable params: 134,273
Non-trainable params: 0
_________________________________________________________________
Train on 15 samples, validate on 6 samples
Epoch 1/9
15/15 [==============================] - 8s 552ms/sample - loss: 0.6971 - acc: 0.5333 - val_loss: 0.6911 - val_acc: 0.6667
Epoch 2/9
15/15 [==============================] - 5s 304ms/sample - loss: 0.6910 - acc: 0.7333 - val_loss: 0.7111 - val_acc: 0.3333
Epoch 3/9
15/15 [==============================] - 3s 208ms/sample - loss: 0.7014 - acc: 0.4667 - val_loss: 0.7392 - val_acc: 0.3333
Epoch 4/9
15/15 [==============================] - 4s 261ms/sample - loss: 0.6890 - acc: 0.5333 - val_loss: 0.7471 - val_acc: 0.3333
Epoch 5/9
15/15 [==============================] - 4s 248ms/sample - loss: 0.6912 - acc: 0.5333 - val_loss: 0.7221 - val_acc: 0.3333
Epoch 6/9
15/15 [==============================] - 3s 210ms/sample - loss: 0.6857 - acc: 0.5333 - val_loss: 0.7143 - val_acc: 0.3333
Epoch 7/9
15/15 [==============================] - 3s 187ms/sample - loss: 0.6906 - acc: 0.5333 - val_loss: 0.7346 - val_acc: 0.3333
Epoch 8/9
15/15 [==============================] - 3s 185ms/sample - loss: 0.7066 - acc: 0.5333 - val_loss: 0.7578 - val_acc: 0.3333
Epoch 9/9
15/15 [==============================] - 4s 235ms/sample - loss: 0.7197 - acc: 0.5333 - val_loss: 0.7120 - val_acc: 0.3333
6/6 [==============================] - 0s 43ms/sample - loss: 0.7120 - acc: 0.3333
test loss: 0.712007462978363
test accuracy: 0.33333334
对应的图形如下所示。
同时,补充LSTM+TFIDF文本分类代码。
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 28 22:10:20 2020
@author: Eastmount CSDN
"""
from jieba import lcut
from numpy import zeros
import matplotlib.pyplot as plt
from gensim.models import Word2Vec
from sklearn.model_selection import train_test_split
from tensorflow.python.keras.preprocessing.sequence import pad_sequences
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, LSTM, GRU, Embedding
from tensorflow.python.keras.callbacks import EarlyStopping
#-----------------------------------定义参数----------------------------------
max_features = 20 #词向量维度
units = 30 #RNN神经元数量
maxlen = 40 #序列最大长度
epochs = 9 #训练最大轮数
batch_size = 12 #每批数据量大小
verbose = 1 #训练过程展示
patience = 1 #没有进步的训练轮数
callbacks = [EarlyStopping('val_acc', patience=patience)]
#--------------------------------载入数据及预处理-------------------------------
data = [
[0, '小米粥是以小米作为主要食材熬制而成的粥,口味清淡,清香味,具有简单易制,健胃消食的特点'],
[0, '煮粥时一定要先烧开水然后放入洗净后的小米'],
[0, '蛋白质及氨基酸、脂肪、维生素、矿物质'],
[0, '小米是传统健康食品,可单独焖饭和熬粥'],
[0, '苹果,是水果中的一种'],
[0, '粥的营养价值很高,富含矿物质和维生素,含钙量丰富,有助于代谢掉体内多余盐分'],
[0, '鸡蛋有很高的营养价值,是优质蛋白质、B族维生素的良好来源,还能提供脂肪、维生素和矿物质'],
[0, '这家超市的苹果都非常新鲜'],
[0, '在北方小米是主要食物之一,很多地区有晚餐吃小米粥的习俗'],
[0, '小米营养价值高,营养全面均衡 ,主要含有碳水化合物'],
[0, '蛋白质及氨基酸、脂肪、维生素、盐分'],
[1, '小米、三星、华为,作为安卓三大手机旗舰'],
[1, '别再管小米华为了!魅族手机再曝光:这次真的完美了'],
[1, '苹果手机或将重陷2016年困境,但这次它无法再大幅提价了'],
[1, '三星想要继续压制华为,仅凭A70还不够'],
[1, '三星手机屏占比将再创新高,超华为及苹果旗舰'],
[1, '华为P30、三星A70爆卖,斩获苏宁最佳手机营销奖'],
[1, '雷军,用一张图告诉你:小米和三星的差距在哪里'],
[1, '小米米聊APP官方Linux版上线,适配深度系统'],
[1, '三星刚刚更新了自家的可穿戴设备APP'],
[1, '华为、小米跨界并不可怕,可怕的打不破内心的“天花板”'],
]
#中文分词
X, Y = [' '.join(lcut(i[1])) for i in data], [i[0] for i in data]
print(X)
print(Y)
#['煮粥 时 一定 要 先烧 开水 然后 放入 洗净 后 的 小米', ...]
#--------------------------------------计算词频------------------------------------
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
#将文本中的词语转换为词频矩阵
vectorizer = CountVectorizer()
#计算个词语出现的次数
X_data = vectorizer.fit_transform(X)
print(X_data)
#获取词袋中所有文本关键词
word = vectorizer.get_feature_names()
print('【查看单词】')
for w in word:
print(w, end = " ")
else:
print("\n")
#词频矩阵
print(X_data.toarray())
#将词频矩阵X统计成TF-IDF值
transformer = TfidfTransformer()
tfidf = transformer.fit_transform(X_data)
#查看数据结构 tfidf[i][j]表示i类文本中的tf-idf权重
weight = tfidf.toarray()
print(weight)
#数据集划分
X_train, X_test, y_train, y_test = train_test_split(weight, Y)
print(X_train.shape, X_test.shape)
print(len(y_train), len(y_test))
#(15, 117) (6, 117) 15 6
#--------------------------------建模与训练-------------------------------
model = Sequential()
#构建Embedding层 128代表Embedding层的向量维度
model.add(Embedding(max_features, 128))
#构建LSTM层
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
#构建全连接层
#注意上面构建LSTM层时只会得到最后一个节点的输出,如果需要输出每个时间点的结果需将return_sequences=True
model.add(Dense(units=1, activation='sigmoid'))
#模型可视化
model.summary()
#激活神经网络
model.compile(optimizer = 'rmsprop', #RMSprop优化器
loss = 'binary_crossentropy', #二元交叉熵损失
metrics = ['acc'] #计算误差或准确率
)
#训练
history = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs,
verbose=verbose, validation_data=(X_test, y_test))
#----------------------------------预测与可视化------------------------------
#预测
score = model.evaluate(X_test, y_test, batch_size=batch_size)
print('test loss:', score[0])
print('test accuracy:', score[1])
#可视化
acc = history.history['acc']
val_acc = history.history['val_acc']
# 设置类标
plt.xlabel("Iterations")
plt.ylabel("Accuracy")
#绘图
plt.plot(range(epochs), acc, "bo-", linewidth=2, markersize=12, label="accuracy")
plt.plot(range(epochs), val_acc, "gs-", linewidth=2, markersize=12, label="val_accuracy")
plt.legend(loc="upper left")
plt.title("LSTM-TFIDF")
plt.show()
输出结果如下所示:
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, None, 128) 2560
_________________________________________________________________
lstm_1 (LSTM) (None, 128) 131584
_________________________________________________________________
dense_1 (Dense) (None, 1) 129
=================================================================
Total params: 134,273
Trainable params: 134,273
Non-trainable params: 0
_________________________________________________________________
Train on 15 samples, validate on 6 samples
Epoch 1/9
15/15 [==============================] - 2s 148ms/sample - loss: 0.6898 - acc: 0.5333 - val_loss: 0.7640 - val_acc: 0.3333
Epoch 2/9
15/15 [==============================] - 1s 48ms/sample - loss: 0.6779 - acc: 0.6000 - val_loss: 0.7773 - val_acc: 0.3333
Epoch 3/9
15/15 [==============================] - 1s 36ms/sample - loss: 0.6769 - acc: 0.6000 - val_loss: 0.7986 - val_acc: 0.3333
Epoch 4/9
15/15 [==============================] - 1s 47ms/sample - loss: 0.6722 - acc: 0.6000 - val_loss: 0.8097 - val_acc: 0.3333
Epoch 5/9
15/15 [==============================] - 1s 42ms/sample - loss: 0.7021 - acc: 0.6000 - val_loss: 0.7680 - val_acc: 0.3333
Epoch 6/9
15/15 [==============================] - 1s 36ms/sample - loss: 0.6890 - acc: 0.6000 - val_loss: 0.8147 - val_acc: 0.3333
Epoch 7/9
15/15 [==============================] - 1s 37ms/sample - loss: 0.6906 - acc: 0.6000 - val_loss: 0.8599 - val_acc: 0.3333
Epoch 8/9
15/15 [==============================] - 1s 43ms/sample - loss: 0.6819 - acc: 0.6000 - val_loss: 0.8303 - val_acc: 0.3333
Epoch 9/9
15/15 [==============================] - 1s 40ms/sample - loss: 0.6884 - acc: 0.6000 - val_loss: 0.7695 - val_acc: 0.3333
6/6 [==============================] - 0s 7ms/sample - loss: 0.7695 - acc: 0.3333
test loss: 0.7694947719573975
test accuracy: 0.33333334
对应图形如下:
最终结果我们进行简单对比,发现机器学习比深度学习好,这是为什么呢?我们又能做哪些提升呢?
作者结合大佬们的文章及自己的经验对其进行简单分析,原因如下:
总之,我们在真实的实验中,尽量选择适合我们数据集的算法,这也是实验中的一部分,我们需要对比各种算法、各种参数、各种学习模型,从而找到一个更好的算法。后续作者会进一步学习TextCNN、Attention、BiLSTM、GAN等算法,希望能与大家一起进步。
参考及推荐文章:请问对于中文长文本分类,是CNN效果好,还是RNN效果好?- 知乎
写道这里,这篇文章就结束了。希望对您有所帮助,同时文章中不足或错误的地方,欢迎读者提出。这些实验都是我在做论文研究或项目评价常见的一些问题,希望读者带着这些问题,结合自己的需求进行深入的思考,更希望大家能学以致用。最后如果文章对您有帮助,请点赞、评论、收藏,这将是我分享最大的动力。
总之,本文通过Keras实现了一个RNN文本分类学习的案例,并详细介绍了循环神经网络原理知识及与机器学习对比。最后,作为人工智能的菜鸟,我希望自己能不断进步并深入,后续将它应用于图像识别、网络安全、对抗样本等领域,指导大家撰写简单的学术论文,一起加油!
(By:Eastmount 2020-02-23 下午4点夜于贵阳 http://blog.csdn.net/eastmount/ )
参考文献:
再次感谢参考文献前辈和老师们的贡献,同时也参考了作者的Python人工智能和数据分析系列文章,源码请在github下载。
[1] Keras的imdb和MNIST数据集无法下载问题解决 - 摸金青年v
[2] 官网实例详解4.42(imdb.py)-keras学习笔记四 - wyx100
[3] Keras文本分类 - 强推基基伟老师文章
[4] TextCNN文本分类(keras实现)- 强推Asia-Lee老师的文章
[5] Keras之文本分类实现 - 强推知乎王奕磊老师的文章
[6 ]自然语言处理入门(二)–Keras实现BiLSTM+Attention新闻标题文本分类 - ilivecode
[7] 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 - 知乎清凇
[8] 基于 word2vec 和 CNN 的文本分类 :综述 & 实践 - 牛亚峰serena
[9] https://github.com/keras-team/keras
[10] [深度学习] keras的EarlyStopping使用与技巧 - zwqjoy
[11] 深度学习为什么会出现validation accuracy大于train accuracy的现象?- ICOZ
[12] Keras实现CNN文本分类 - vivian_ll
[13] Keras文本分类实战(上)- weixin_34351321
[14] 请问对于中文长文本分类,是CNN效果好,还是RNN效果好?- 知乎