点击跳转
先乘以 1 6 n − 1 16^{n-1} 16n−1
现在就是要计算小数后面第一位
假设 1 6 n − k = t ( 8 k + 1 ) + r 16^{n-k} = t(8k+1) + r 16n−k=t(8k+1)+r,其中 t t t是整数, r r r是不超过 ( 8 k + 1 ) (8k+1) (8k+1)的余数
则其对小数的贡献是 r / ( 8 k + 1 ) r/(8k+1) r/(8k+1)
然后会发现算出来是负数
没关系,我只要不停的加一,直到它大于 0 0 0为止就停下
#include
#include
#include
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define maxe 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(i,a,b) for(i=a;i<=b;i++)
#define drep(i,a,b) for(i=a;i>=b;i--)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
ll c, f(1);
for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
for(;isdigit(c);c=getchar())x=x*10+c-0x30;
return f*x;
}
struct EasyMath
{
ll prime[maxn], phi[maxn], mu[maxn];
bool mark[maxn];
ll fastpow(ll a, ll b, ll c)
{
ll t(a%c), ans(1ll);
for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
return ans;
}
void exgcd(ll a, ll b, ll &x, ll &y)
{
if(!b){x=1,y=0;return;}
ll xx, yy;
exgcd(b,a%b,xx,yy);
x=yy, y=xx-a/b*yy;
}
ll inv(ll x, ll p) //p是素数
{return fastpow(x%p,p-2,p);}
ll inv2(ll a, ll p)
{
ll x, y;
exgcd(a,p,x,y);
return (x+p)%p;
}
void shai(ll N)
{
ll i, j;
for(i=2;i<=N;i++)mark[i]=false;
*prime=0;
phi[1]=mu[1]=1;
for(i=2;i<=N;i++)
{
if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
for(j=1;j<=*prime and i*prime[j]<=N;j++)
{
mark[i*prime[j]]=true;
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
mu[i*prime[j]]=-mu[i];
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
}
ll CRT(vector<ll> a, vector<ll> m) //要求模数两两互质
{
ll M=1, ans=0, n=a.size(), i;
for(i=0;i<n;i++)M*=m[i];
for(i=0;i<n;i++)(ans+=a[i]*(M/m[i])%M*inv2(M/m[i],m[i]))%=M;
return ans;
}
}em;
ll T, n;
int main()
{
double ans=0;
ll i, k, kase;
T=read();
rep(kase,1,T)
{
ll n=read();
ans=0;
rep(k,0,n-1)
{
ans += double( 4*em.fastpow(16,n-1-k,8*k+1)%(8*k+1) ) / (8*k+1);
ans -= double( 2*em.fastpow(16,n-1-k,8*k+4)%(8*k+4) ) / (8*k+4);
ans -= double( 1*em.fastpow(16,n-1-k,8*k+5)%(8*k+5) ) / (8*k+5);
ans -= double( 1*em.fastpow(16,n-1-k,8*k+6)%(8*k+6) ) / (8*k+6);
ans -= ll(ans);
}
double inv = 1.0/16;
rep(k,n,n+100000)
{
ans += inv * ( 4.0/(8*k+1) - 2.0/(8*k+4) - 1.0/(8*k+5) - 1.0/(8*k+6) );
inv /= 16;
}
ans -= ll(ans);
while(ans<0)ans++;
printf("Case #%lld: %lld %X\n",kase,n,int(ans*16)%16);
}
return 0;
}