- win7下python3.6通过pip安装scipy报错的解决办法
青松一夏
python
一、问题描述通过pip方式安装了numpy和sklearn,但是sklearn需要依赖于scipy,但当通过pip方式安装scipy时,报错:numpy.distutils.system_info.NotFoundError:nolapack/blasresourcesfound按照网上的教程,并没有找到真正的解决办法,后来我是通过如下方式解决的。二、我的解决方案(1)首先卸载numpypipun
- SelectDB 实时分析性能突出,宝舵成本锐减与性能显著提升的双赢之旅
SelectDB技术团队
大数据物联网dorisselectdb人工智能电商场景数据分析
BOCDOP宝舵早期基于TiDB构建实时数仓,随着数据量增长,在数据处理效率、OLAP能力扩展、功能支持、成本与资源方面存在一定优化空间。为提升数据分析能力并优化成本,宝舵引入SelectDB,达成写入速度提升10倍,成本直降30%的显著成效。本文转录自高瑞军(宝尊科技高级架构师)在DorisSummitAsia2024上的演讲,经编辑整理。业务背景宝尊集团创立于2007年,是中国品牌电商服务行业
- HIVE开窗函数
Cciccd
sqlhive
ETL,SQL面试高频考点——HIVE开窗函数(基础篇)目录标题ETL,SQL面试高频考点——HIVE开窗函数(基础篇)一,窗口函数介绍二,开窗函数三,分析函数分类1,排序分析函数:实列解析对比总结2.聚合分析函数3.用spark自定义HIVE用户自定义函数后续更新中~一,窗口函数介绍窗口函数,也叫OLAP函数(OnlineAnallyticalProcessing,联机分析处理),可以对数据库数
- 【Python】使用Python连接ClickHouse进行批量数据写入
音乐学家方大刚
ClickhousePythonpythonclickhouseoracle
有许多时候眼泪就要流那扇窗是让我坚强的理由小小的门口还有她的温柔给我温暖陪伴我左右曾经的乡音悄悄地隐藏说不出的诺言一直放心上李健《异乡人》在本教程中,我们将探讨如何使用Python连接到ClickHouse数据库,并执行批量数据写入操作。ClickHouse是一个用于在线分析处理查询(OLAP)的列式数据库管理系统,它能够以极高的速度进行数据查询和更新操作。环境准备首先,确保你的环境中已安装Cli
- ClickHouse优化技巧实战指南:从原理到案例解析
AAEllisonPang
Clickhouseclickhouse
目录ClickHouse优化核心思想表结构设计优化查询性能优化技巧数据写入优化方案系统配置调优实战高可用与集群优化真实案例解析总结与建议1.ClickHouse优化核心思想ClickHouse作为OLAP领域的明星引擎,其优化需遵循列式存储特性,把握以下原则:批量操作优于单行处理预计算替代实时计算数据有序存储提升检索效率利用硬件资源最大化吞吐量2.表结构设计优化2.1分区键选择选择低基数且高频过滤
- 大数据面试之路 (三) mysql
愿与狸花过一生
大数据面试职场和发展
技术选型通常也是被问道的问题,一方面考察候选人对技术掌握程度,另一方面考察对项目的理解,以及项目总结能力。介绍项目是从数据链路介绍,是一个很好来的方式,会让人觉得思路清晰,项目理解透彻。将SparkSQL加工后的数据存入MySQL通常基于以下几个关键原因:1.数据应用场景适配OLTP与OLAP分工:SparkSQL擅长处理大数据量的OLAP(分析型)任务,而MySQL作为OLTP(事务型)数据库,
- 初识开源云原生数仓Databend
开源项目精选
云原生
Databend是一款开源的数据仓库产品,主要定位于OLAP场景,采用云原生架构理念(可对比snowflake),有非常好的扩展性、同时具备低成本、高性能的优势,兼容MySQL协议。Stars数8,245Forks数765主要特点针对对象存储平台进行优化的云原生架构。符合SQL:2011标准,支持复杂查询和数据版本回溯(时间旅行)功能。与流行的商业智能(BI)、提取、转换和加载(ETL)以及数据科
- 书籍-《车辆动力学的控制应用》
自动驾驶人工智能无人驾驶汽车
书籍:ControlApplicationsofVehicleDynamics作者:JingshengYu,VladimirVantsevich出版:CRCPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《车辆动力学的控制应用》01书籍介绍本书介绍了汽车动力学和控制理论的基本知识,并结合NILabVIEW软件产品的应用,为设计先进的车辆动力学及车辆系统控制器提供了实用且高度技术性的指
- ClickHouse 作用,优缺点。
mldsh13
clickhouse
ClickHouseClickHouse是一个开源的分布式列式数据库管理系统(DBMS),专门设计用于实时分析(OLAP)。它最初由俄罗斯的Yandex开发,后来成为了开源项目,被广泛应用于需要高性能数据分析和查询的场景。作用:实时分析:ClickHouse专注于快速查询和分析大量数据,使其特别适用于数据分析、报告和实时仪表板等应用场景。大规模数据处理:能够处理海量数据,支持分布式架构,可以水平扩
- doris:Elasticsearch
向阳1218
大数据doris
ElasticsearchCatalog除了支持自动映射ES元数据外,也可以利用Doris的分布式查询规划能力和ES(Elasticsearch)的全文检索能力相结合,提供更完善的OLAP分析场景解决方案:ES中的多index分布式Join查询。Doris和ES中的表联合查询,更复杂的全文检索过滤。使用限制支持Elasticsearch5.x及以上版本。创建CatalogCREATECATALOG
- ClickHouse Keeper 源码解析
阿里云云栖号
云栖号技术分享java开发语言后端
简介:ClickHouse社区在21.8版本中引入了ClickHouseKeeper。ClickHouseKeeper是完全兼容Zookeeper协议的分布式协调服务。本文对开源版本ClickHousev21.8.10.19-lts源码进行了解析。作者简介:范振(花名辰繁),阿里云开源大数据-OLAP方向负责人。内容框架背景架构图核心流程图梳理内部代码流程梳理Nuraft关键配置排坑结论关于我们R
- 数据处理领域有OLTP和OLAP两大类型
驭风少年56
每日知识分享学习
OLTP全称OnlineTransactionProcessing联机事务处理系统存储的是业务数据,记录某类业务事件的发生,suchas:下单,注册,支付等等。典型代表有Mysql,Oracle等数据库,对应的网站,系统应用后端数据库应用比较简单,数据量相对较少,是GB级别的,面向业务开发人员。OLAP全称是OnlineAnalyticalProcessing联机分析处理系统存储多业务历史数据,支
- 市面上的OLTP和OLAP工具有哪些
研创通之逍遥峰
数据库数据分析
市面上的OLTP(OnlineTransactionProcessing,联机事务处理)和OLAP(OnlineAnalyticalProcessing,联机分析处理)系统或数据库众多,它们各自具有不同的特点和应用场景。以下是对市面上主流的OLTP和OLAP系统或数据库的归纳:OLTP系统或数据库OLTP系统主要用于处理大量的短期在线事务,支持高并发、实时性强、数据一致性要求高。常见的OLTP系统
- OLAP与OLTP:数据处理系统的两种核心架构
思静鱼
#Mysql-数据库架构
文章目录OLAP和OLTP的主要区别OLAP常见数据库和OLTP常见数据库OLAP是英文OnlineAnalyticalProcessing的缩写,中文称为联机分析处理。它是一种基于多维数据模型的分析处理技术,用于从不同的角度进行数据挖掘和分析,以帮助用户快速发现数据之间的相关性和趋势。OLAP技术通常涉及到预计算、缓存和查询优化等方面的技术,可用于构建在线分析系统(OLAP系统)。该系统将大量的
- 什么是数据库中的宽表?
見贤思齊
数据分析数据库
数据库中的宽表(WideTable)是指一种包含大量列的表结构设计,通常通过将多个业务相关的数据字段(甚至来自不同表的字段)合并到一张表中,以减少多表关联查询的需求。宽表常见于数据仓库、OLAP(联机分析处理)系统或大数据场景,其核心目标是优化查询性能,尤其是在需要频繁进行复杂分析或生成报表的场景中。一、宽表的核心特点1.列数多宽表可能包含数十甚至数百列,涵盖多个维度和指标(例如订单信息、客户信息
- Doris、ClickHouse 和 Flink 这三个技术典型的应用场景
每天瞎忙的农民工
大数据clickhouseflink大数据doris
Doris、ClickHouse和Flink这三个技术在不同业务场景下有各自的成功落地方案,主要用于数据分析、实时计算和高性能查询。以下是一些典型的应用场景:1.ApacheDoris落地方案应用场景Doris适用于海量数据的实时查询和分析,尤其适用于报表查询、OLAP分析和BI工具对接。案例某互联网广告公司业务背景:广告业务需要分析用户点击行为,监测广告投放效果,并进行精准推荐。技术方案:数据来
- 华为GaussDB相关整理
NorthrendSnow
数据库GaussDB
一文了解华为Gauss数据库:开发历程、OLTP&OLAP特点、行式&列式存储,及与Oracle和AWS对比GaussDB1001.0.1产品文档GaussDB200产品文档
- 《数据仓库与数据挖掘》自测
破坏神在行动
数据仓库与数据挖掘数据仓库数据挖掘
试卷一一、选择题(每题2分,共20分)1.数据仓库的主要特征不包括以下哪一项?A.数据量大B.异构数据整合C.事务处理D.支持决策分析2.OLAP的核心功能是:A.事务处理B.多维数据分析C.数据清洗D.数据转换3.以下哪个不是元数据的分类?A.数据源元数据B.数据模型元数据C.数据仓库映射元数据D.数据备份元数据4.数据挖掘中的KDD指的是:A.数据清洗B.知识发现C.知识库设计D.知识库查询5
- 为AI聊天工具添加一个知识系统 之113 详细设计之54 Chance:偶然和适配 之2
一水鉴天
软件智能智能制造人工语言开发语言人工智能
本文要点要点祖传代码中的”槽“(占位符变量)和它在实操中的三种槽(占据槽,请求槽和填充槽,实时数据库(source)中数据(流入ETL的一个正序流程行列并发靶向整形绑定变量)是如何通过“命名所依的AI行为”、“分类所缘的因果结构”和“求实所据的机器特征”(元数据仓库OLAP的三个行式并行服务进程锚定配形-限定变量)来精确锚定ETL任务绑定中的这个绑定到底是,谁和谁的什么绑定(资源存储库随着ETL的
- ClickHouse 数仓
大怀特
bigdatadatabasesoftwarearchitecturejava数据库
ClickHouse是OLAP并且面向列的数据管理系统.具有高性能分析任何应用,从是嵌入式服务到成百台服务器.开源并且面向列的SQL存储ClickHouse首先是一个开源的SQL数仓,并且带有高性能,成熟,像数据SybaseIQ,Vertica,andSnowflake一样稳定.有以下特性列存储,并且可以有万亿的行和数千列已经压缩并且编解码显著减少I/O可以线性扩展通过矢量查询和sharding具
- 移动程序后出现Cannot resolve symbol AppCompatActivity等错误
...飞一般的感觉
andriod
移动androidstudio程序包到不同电脑后,出现CannotresolvesymbolAppCompatActivity等错误,网上有说没有包含lib包。importandroid.support.v4.app.ActivityCompat;importandroid.support.v4.content.ContextCompat;importandroid.support.v7.app.
- centos7 安装单机 ClickHouse
小码农叔叔
大数据clickhouse安装clickhouse单机安装clickhouse单节点安装安装单机clickhouse
前言ClickHouse是俄罗斯的Yandex于2016年开源的列式存储数据库(DBMS),使用C++语言编写,主要用于在线分析处理查询(OLAP),能够使用SQL查询实时生成分析数据报告本篇首先介绍下如何基于centos7环境安装单机版的clickhouse官网:https://clickhouse.com/环境准备centos7环境(虚拟机或者云服务器)clickhouse基础安装包安装前置步
- CentOS7 部署安装ClickHouse
zhua.er
ClickHouse数据库ClickHouse
一、什么是ClickHouseClickHouse是俄罗斯的Yandex于2016年开源的列式存储数据库(DBMS),使用C++语言编写,主要用于在线分析处理查询(OLAP),能够使用SQL查询实时生成分析数据报告。OLAP场景需要在大型数据集上对具有以下特征的复杂分析查询进行实时响应:数据集可以是巨大的——数十亿或数万亿行数据组织在包含多列的表中只选择少数几列来回答任何特定的查询必须以毫秒或秒为
- oltp olap的区别
薛定谔的猫1982
系统架构系统架构
OLTP(联机事务处理)和OLAP(联机分析处理)有以下多方面的区别:应用场景OLTP:用于处理企业的日常业务交易,比如银行的存取款业务、电商网站的订单生成、酒店的客房预订等,侧重于对业务流程的支持,确保事务的快速处理和数据的即时更新。OLAP:主要用于企业的决策支持和数据分析场景,如市场趋势分析、销售业绩评估、财务状况分析等,帮助管理层从宏观角度理解业务数据,为决策提供依据。数据特点OLTP数据
- Doris实战——工商信息查询平台的湖仓一体建设
吵吵叭火
大数据大数据数据仓库
目录前言一、架构1.0:传统Lambda架构二、OLAP引擎调研三、架构2.0:数据服务层AllinApacheDoris四、架构3.0:基于DorisMulti-Catalog的湖仓一体架构五、实践经验5.1引入Merge-on-Write,百亿级单表查询提速近三倍5.2部分列数据更新,数据开发效率提升100%5.3丰富Join的优化手段,整体查询速度最高提升近四倍5.4LightSchemaC
- MySQL核心原理4
郑心程意
databasemysql数据库
性能优化1.硬件选择CPU:OLTP高可用小事务查询、OLAP分析系统仓库RAM:越大越好快磁盘存储:SSD、阵列优网络、系统:关DNS、mysql接入区DMG内网core:DNS、mysql文件句柄打开数量即开辟io通道可命令:ulimit-n查看10242.缓存Redis、memcrched内存中,减少mysql压力缓存穿透:布隆过滤器bloomfilter缓存雪崩:主从机制加高可用方案、高并
- SQL 调优最佳实践笔记
modelsetget
mysqlsql笔记数据库
定义与重要性SQL调优:提高SQL性能,减少查询时间和资源消耗。目标:减少查询时间和扫描的数据行数。基本原则减少扫描行数:只扫描所需数据。使用合适索引:确保WHERE条件命中最优索引。合适的Join类型:根据表的大小和关联性选择。选择合适的数据库:根据业务类型选择OLTP或OLAP。DQL最佳实践(SELECT)避免多表JOIN,尤其是大数据量情况下。避免全表扫描,使用索引优化查询。索引使用全表扫
- DuckDB FDW 使用教程
邓娉靓Melinda
DuckDBFDW使用教程项目地址:https://gitcode.com/gh_mirrors/du/duckdb_fdw项目介绍DuckDBFDW(ForeignDataWrapper)是一个用于PostgreSQL的外部数据包装器,它允许PostgreSQL数据库直接访问和查询DuckDB数据库中的数据。DuckDB是一个嵌入式SQL数据库,专为OLAP场景设计,具有高性能和低延迟的特点。通
- StarRocks和ClickHouse对比
靴子学长
clickhouse数据库数据库架构java
经过研究,StarRocks与ClickHouse作为OLAP数据库在某些场景下都展现出极端的性能表现,且都不依赖于ApacheHadoop生态系统。在特定情况下,StarRocks的性能甚至优于ClickHouse。ClickHouse适合变化较少的扁平表场景,而StarRocks在单表测试中表现更好,且在多表关联方面具有更大的优势1。在架构方面,ClickHouse采用散布-聚集的模型,而St
- StarRocks实战——贝壳找房数仓实践
吵吵叭火
大数据#StarRocks数据仓库大数据
目录前言一、StarRocks在贝壳的应用现状1.1历史的数据分析架构1.2OLAP选型1.2.1离线场景1.2.2实时场景1.2.3StarRocks的引入二、StarRocks在贝壳的分析实践2.1指标分析2.2实时业务2.3可视化分析三、未来规划3.1StarRocks集群的稳定性3.2StarRocks新特性采用原文大佬的这篇贝壳找房数仓实践的文章整体写的很深入,这里摘抄下来用作学习和知识
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不