图像滤波----低通滤波,中值滤波,高通滤波,方向滤波(Sobel),拉普拉斯变换


①观察灰度分布来描述一幅图像成为空间域,观察图像变化的频率被成为频域。
②频域分析:低频对应区域的图像强度变化缓慢,高频对应的变化快。低通滤波器去除了图像的高频部分,高通滤波器去除了图像的低频部分。

(1)低通滤波
①栗子:

#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
int main()
{
    // Read input image
    cv::Mat image= cv::imread("boldt.jpg",0);
    if (!image.data)
        return 0; 
    // Display the image
    cv::namedWindow("Original Image");
    cv::imshow("Original Image",image);

  // Blur the image with a mean filter
    cv::Mat result;
    cv::blur(image,result,cv::Size(5,5));   
    // Display the blurred image
    cv::namedWindow("Mean filtered Image");
    cv::imshow("Mean filtered Image",result);

结果:每个像素变为相邻像素的平均值, 快速的强度变化转化为平缓的过度
图像滤波----低通滤波,中值滤波,高通滤波,方向滤波(Sobel),拉普拉斯变换_第1张图片
②栗子:近的像素添加更多的权重。:高斯滤波器

cv::GaussianBlur(image,result,cv::Size(5,5),1.5);

图像滤波----低通滤波,中值滤波,高通滤波,方向滤波(Sobel),拉普拉斯变换_第2张图片

(2)中值滤波 :非线性滤波
有效去除椒盐噪点

cv::medianBlur(image,result,5);

图像滤波----低通滤波,中值滤波,高通滤波,方向滤波(Sobel),拉普拉斯变换_第3张图片

(3)方向滤波(Sobel)
强调图像中的高频分量,使用高通滤波器进行边缘检测。
Sobel算子是一种经典的边缘检测线性滤波器,可被认为是图像在垂直和水平方向变化的测量。

#include 
#include 
#include 
#include 
#include 
#include "laplacianZC.h"

int main()
{
     //Read input image
    cv::Mat image= cv::imread("boldt.jpg",0);
    if (!image.data)
        return 0; 

    // Display the image
    cv::namedWindow("Original Image");
    cv::imshow("Original Image",image);

    // Compute Sobel X derivative
    cv::Mat sobelX;
    cv::Sobel(image,sobelX,CV_8U,1,0,3,0.4,128);

    // Display the image
    cv::namedWindow("Sobel X Image");
    cv::imshow("Sobel X Image",sobelX);

    // Compute Sobel Y derivative
    cv::Mat sobelY;
    cv::Sobel(image,sobelY,CV_8U,0,1,3,0.4,128);

    // Display the image
    cv::namedWindow("Sobel Y Image");
    cv::imshow("Sobel Y Image",sobelY);

    // Compute norm of Sobel     得到sobel的摸
    cv::Sobel(image,sobelX,CV_16S,1,0);
    cv::Sobel(image,sobelY,CV_16S,0,1);
    cv::Mat sobel;
    //compute the L1 norm
    sobel= abs(sobelX)+abs(sobelY);

    double sobmin, sobmax;
    cv::minMaxLoc(sobel,&sobmin,&sobmax);
    std::cout << "sobel value range: " << sobmin << "  " << sobmax << std::endl;

    // Print window pixel values
    for (int i=0; i<12; i++) {
        for (int j=0; j<12; j++)
            std::cout << std::setw(5) << static_cast<int>(sobel.at<short>(i+135,j+362)) << " ";
        std::cout << std::endl;
    }
    std::cout << std::endl;
    std::cout << std::endl;
    std::cout << std::endl;

    // Conversion to 8-bit image
    // sobelImage = -alpha*sobel + 255
    cv::Mat sobelImage;
    sobel.convertTo(sobelImage,CV_8U,-255./sobmax,255);

    // Display the image
    cv::namedWindow("Sobel Image");
    cv::imshow("Sobel Image",sobelImage);

    // Apply threshold to Sobel norm (low threshold value)
    cv::Mat sobelThresholded;
    cv::threshold(sobelImage, sobelThresholded, 225, 255, cv::THRESH_BINARY);

    // Display the image
    cv::namedWindow("Binary Sobel Image (low)");
    cv::imshow("Binary Sobel Image (low)",sobelThresholded);

    // Apply threshold to Sobel norm (high threshold value)
    cv::threshold(sobelImage, sobelThresholded, 190, 255, cv::THRESH_BINARY);

    // Display the image
    cv::namedWindow("Binary Sobel Image (high)");
    cv::imshow("Binary Sobel Image (high)",sobelThresholded);

结果:
图像滤波----低通滤波,中值滤波,高通滤波,方向滤波(Sobel),拉普拉斯变换_第4张图片
(4)图像的拉普拉斯变换
是一种基于图像导数的高通线性滤波器,计算二阶倒数已衡量图像的弯曲度。

// Compute Laplacian 3x3
    cv::Mat image = cv::imread("boldt.jpg", 0);
    cv::Mat laplace;
    cv::Laplacian(image,laplace,CV_8U,1,1,128);

    // Display the image
    cv::namedWindow("Laplacian Image");
    cv::imshow("Laplacian Image",laplace);

    // Print window pixel values
    for (int i=0; i<12; i++) {
        for (int j=0; j<12; j++)
            std::cout << std::setw(5) << static_cast<int>(laplace.at(i+135,j+362))-128 << " ";
        std::cout << std::endl;
    }
    std::cout << std::endl;
    std::cout << std::endl;
    std::cout << std::endl;

    // Compute Laplacian 7x7
    cv::Laplacian(image,laplace,CV_8U,7,0.01,128);

    // Display the image 
    cv::namedWindow("Laplacian Image");
    cv::imshow("Laplacian Image",laplace);

    // Print window pixel values
    for (int i=0; i<12; i++) {
        for (int j=0; j<12; j++)
            std::cout << std::setw(5) << static_cast<int>(laplace.at(i+135,j+362))-128 << " ";
        std::cout << std::endl;
    }

    // Extract small window
    cv::Mat window(image,cv::Rect(362,135,12,12));
    cv::namedWindow("Image window");
    cv::imshow("Image window",window);
    cv::imwrite("window.bmp",window);

    // Compute Laplacian using LaplacianZC class
    LaplacianZC laplacian;
    laplacian.setAperture(7);
    cv::Mat flap= laplacian.computeLaplacian(image);
    double lapmin, lapmax;
    cv::minMaxLoc(flap,&lapmin,&lapmax);
    std::cout << "Laplacian value range=[" << lapmin << "," << lapmax << "]\n";
    laplace= laplacian.getLaplacianImage();
    cv::namedWindow("Laplacian Image (7x7)");
    cv::imshow("Laplacian Image (7x7)",laplace);

    // Print Laplacian values
    std::cout << std::endl;
    for (int i=0; i<12; i++) {
        for (int j=0; j<12; j++)
            std::cout << std::setw(5) << static_cast<int>(flap.at<float>(i+135,j+362)/100) << " ";
        std::cout << std::endl;
    }
    std::cout << std::endl;

    // Compute and display the zero-crossing points
    cv::Mat zeros;
    zeros= laplacian.getZeroCrossings(lapmax);
    cv::namedWindow("Zero-crossings");
    cv::imshow("Zero-crossings",zeros);

    // Compute and display the zero-crossing points (Sobel version)
    zeros= laplacian.getZeroCrossings();
    zeros= laplacian.getZeroCrossingsWithSobel(50);
    cv::namedWindow("Zero-crossings (2)");
    cv::imshow("Zero-crossings (2)",zeros);

    // Print window pixel values
    for (int i=0; i<12; i++) {
        for (int j=0; j<12; j++)
            std::cout << std::setw(2) << static_cast<int>(zeros.at(i+135,j+362)) << " ";
        std::cout << std::endl;
    }

    // Display the image with window
    cv::rectangle(image,cv::Point(362,135),cv::Point(374,147),cv::Scalar(255,255,255));
    cv::namedWindow("Original Image with window");
    cv::imshow("Original Image with window",image);

    cv::waitKey();
    return 0;
}

图像滤波----低通滤波,中值滤波,高通滤波,方向滤波(Sobel),拉普拉斯变换_第5张图片

你可能感兴趣的:(opencv)