本文用的是emgucv4.1,对图像进行离散傅里叶变换,之后使用高斯滤波,再还原滤波后的图
1、对原图进行离散变换,之后显示频率
//============================1、将输入图像扩展到最佳的尺寸,边界用0补充
int m = CvInvoke.GetOptimalDFTSize(glMain8UC1.Rows);
int n = CvInvoke.GetOptimalDFTSize(glMain8UC1.Cols);
Mat padded = new Mat();
CvInvoke.CopyMakeBorder(glMain8UC1, padded, 0, m - glMain8UC1.Rows, 0, n - glMain8UC1.Cols, BorderType.Constant);
padded.ConvertTo(padded, DepthType.Cv32F); //将padded转换为Cv32F类型,此为傅里叶变换的实部
//============================2、创建傅里立叶的实部和虚部
//创建元素值都为0的zeroMat,此为傅里叶变换的虚部
Mat zeroMat = Mat.Zeros(padded.Rows, padded.Cols, DepthType.Cv32F, 1);
VectorOfMat matVector = new VectorOfMat(); //创建mat型向量
matVector.Push(padded); //将padded压入matVector中
matVector.Push(zeroMat); //将zeroMat压入matVector中
//创建channel数为2的mat,用于存储傅里叶变换的实部和虚部
Mat complexI = new Mat(padded.Size, DepthType.Cv32F, 2);
CvInvoke.Merge(matVector, complexI); //将matVector中存储的2个mat,merge到complexI中
//=============================3、创建mat,用于保存傅里叶变换的结果
Mat fourier = new Mat(complexI.Size, DepthType.Cv32F, 2);
//调用傅里叶变换函数Dft,进行傅里叶变换
CvInvoke.Dft(complexI, fourier, DxtType.Forward, complexI.Rows);
Mat tempFourier = new Mat(complexI.Size, DepthType.Cv32F, 2);
fourier.CopyTo(tempFourier);
//=============================4、对结果进行变换显示
//将复数转换为幅值,即=>log(1+sqrt(Re(DFT(I)^2+Im(DFT(I)^2))
Mat magnitudeImage = Magnitude(fourier);
CvInvoke.Log(magnitudeImage, magnitudeImage);
//若有奇数行或奇数列,则进行频谱裁剪
magnitudeImage = new Mat(magnitudeImage, new Rectangle(0, 0, magnitudeImage.Cols & -2, magnitudeImage.Rows & -2));
//重新排列傅里叶图像中的象限,使得原点位于图像中心
SwitchQuadrants(ref magnitudeImage);
CvInvoke.Normalize(magnitudeImage, magnitudeImage, 0, 255, NormType.MinMax, DepthType.Cv8U);
CvInvoke.Imshow("fourier forward", magnitudeImage);
2、对原图进行离散变换后,使用高斯滤波,再还原图像
//============================1、将输入图像扩展到最佳的尺寸,边界用0补充
int m = CvInvoke.GetOptimalDFTSize(glMain8UC1.Rows);
int n = CvInvoke.GetOptimalDFTSize(glMain8UC1.Cols);
Mat padded = new Mat();
CvInvoke.CopyMakeBorder(glMain8UC1, padded, 0, m - glMain8UC1.Rows, 0, n - glMain8UC1.Cols, BorderType.Constant);
padded.ConvertTo(padded, DepthType.Cv32F); //将padded转换为Cv32F类型,此为傅里叶变换的实部
//============================2、创建傅里立叶的实部和虚部
//创建元素值都为0的zeroMat,此为傅里叶变换的虚部
Mat zeroMat = Mat.Zeros(padded.Rows, padded.Cols, DepthType.Cv32F, 1);
VectorOfMat matVector = new VectorOfMat(); //创建mat型向量
matVector.Push(padded); //将padded压入matVector中
matVector.Push(zeroMat); //将zeroMat压入matVector中
//创建channel数为2的mat,用于存储傅里叶变换的实部和虚部
Mat complexI = new Mat(padded.Size, DepthType.Cv32F, 2);
CvInvoke.Merge(matVector, complexI); //将matVector中存储的2个mat,merge到complexI中
//=============================3、创建mat,用于保存傅里叶变换的结果
Mat fourier = new Mat(complexI.Size, DepthType.Cv32F, 2);
//调用傅里叶变换函数Dft,进行傅里叶变换
CvInvoke.Dft(complexI, fourier, DxtType.Forward, complexI.Rows);
Mat tempFourier = new Mat(complexI.Size, DepthType.Cv32F, 2);
fourier.CopyTo(tempFourier);
//==============================4、对应的滤波卷积处理
this.SwitchQuadrants(ref tempFourier);
Mat gaoshiKernel = GMLib.GasMat(tempFourier.Size, 55);
CvInvoke.MulSpectrums(tempFourier, gaoshiKernel, tempFourier, MulSpectrumsType.Default);
this.SwitchQuadrants(ref tempFourier);
//==============================5、反傅立叶变换
Mat fourierInv = new Mat(fourier.Size, DepthType.Cv32F, 2);
//注意,反变换时,必须用这个参数 DxtType.InvScale
CvInvoke.Dft(tempFourier, fourierInv, DxtType.InvScale, tempFourier.Rows);
Mat mainInv32FC1 = Magnitude(fourierInv);
Mat mainInv8UC1 = new Mat(mainInv32FC1.Size, DepthType.Cv8U, 1);
CvInvoke.ConvertScaleAbs(mainInv32FC1, mainInv8UC1, 1.0, 1.0);
CvInvoke.Imshow("mainInv", mainInv8UC1);
3、完整程序在链接中