- Python 中的离线语音转文本
无水先生
语音编程人工智能综合python开发语言
Python中的离线语音转文本一、说明 写作、编码、写博客、办公室工作、文档、报告都需要一个人在键盘上打字。这会导致健康问题,如腕管综合症、手和手指疼痛等。我非常了解这种痛苦。这是用于创建自己的离线运行的听写程序的Python代码。只需对着耳机的麦克风说话,它就会将您的话转换为文本并将其保存在文本文件中。二、安装 您将需要安装Python库—vosk、pyaudio。 Vosk是一个语音识别
- 最方便的离线python实时中文语音识别!
迟钝皮纳德
python语音识别
废话不多说,直接上代码,先安装环境需要安装的包:jsonpyaudionumpyvosk新建一个py文件写入:importjsonimportpyaudioimportnumpyasnpfromvoskimportModel,KaldiRecognizer,SetLogLeveldefSaveWave(model):#设置音频参数FORMAT=pyaudio.paInt16#音频流的格式RATE=
- 基于树莓派的轻量级AI数字人开发全流程指南 ——从硬件选型到语音视觉交互实战
zhz5214
AIai人工智能AI写作AI编程智能体
1.背景与目标AI数字人,像是虚拟助手、交互式角色,在当下数字化浪潮中扮演着越来越重要的角色。其核心在于整合语音识别、视觉感知、自然语言处理(NLP)和动态反馈四大关键功能。本文将以树莓派5开发板为核心,搭配AI加速硬件,结合开源框架,为大家详细阐述如何实现本地化轻量级数字人开发。这一方案特别适用于教育领域,帮助学生更直观地理解AI技术;在智能家居场景中,也能为用户带来更智能、便捷的交互体验。2.
- AI 大模型应用数据中心建设:高性能计算与存储架构
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
AI大模型、数据中心、高性能计算、存储架构、分布式训练、GPU加速、数据管理1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,特别是深度学习模型的突破性进展,催生了一系列基于大规模数据训练的强大AI模型,例如GPT-3、BERT、DALL-E等。这些AI大模型在自然语言处理、计算机视觉、语音识别等领域展现出强大的应用潜力,但也对计算资源和数据存储提出了极高的要求。传统的计算架构难以满足AI大
- 一个简单的语音识别实现---百度在线语音识别REST API SDK(Python)简单使用
DerrickOzil
语音识别pythonsdk语音识别
百度在线语音识别RESTAPISDK(Python)简单使用首先申请开发者权限注册开发者信息完成注册创建新应用下载SDK并查看key在应用管理中,选择查看key,记录AppID、APIKey、SecretKey三个参数值。测试音频链接:http://pan.baidu.com/s/1o8Ue4B4密码:o5r1]注意事项音频格式限制pcm(不压缩)、wav、amr采样频率及位数支持评测8k/16k
- AI大模型从入门到精通,2025终极指南!好卷啊,又不能躺平,只能悄悄卷你们了!
大模型教程
人工智能大模型训练LLM知识库大模型大模型入门大模型学习
什么是AI大模型?AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理、图像识别、语音识别等。为什么要学AI大模型?2024人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用,大模型作为其中的重要组成部分,正逐渐成为推动人工智能发展的重要引擎。大模型以其强大的数据处理和模式识别能力,广泛应用于
- FireRedASR:精准识别普通话、方言和歌曲歌词!小红书开源工业级自动语音识别模型
蚝油菜花
每日AI项目与应用实例语音识别人工智能人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!微信公众号|搜一搜:蚝油菜花大家好,我是蚝油菜花,今天跟大家分享一下FireRedASR这个小红书开源的工业级自动语音识别模型。快速阅读FireRedASR是小红书开源的工业级自动语音识别模型,支持普通话、中文方言和英语。该模型在普通话ASR基准测试
- 语音识别后处理代码
hitsz_syl
语音识别后处理
importreimportdifflibimportosfromdatetimeimportdatetime,timedeltadefextract_snippets_no_duplicates(input_file,output_file,window=150):"""从输入文本文件中提取包含目标字符(A、B、C、D、"开始"、"结束")前后`window`个字符范围的文本。提取时扩展到完整的
- 热门AI创作助手推荐【第一期】
量子星澜
文心一言AI写作chatgpt
星游AI创作助手人工智能在现代科技中的应用非常广泛,涵盖了诸多领域,包括但不限于以下几个方面:1.语音识别和自然语言处理:人工智能技术被广泛应用于语音识别和自然语言处理领域,例如智能助手、翻译系统、语音交互系统等。2.机器学习和数据分析:人工智能的机器学习算法被用于数据分析、预测建模、用户个性化推荐等领域,帮助企业做出更准确的商业决策。3.计算机视觉:人工智能在计算机视觉领域的应用包括图像识别、视
- AI笔记——语音识别
Yuki-^_^
人工智能AI人工智能笔记语音识别
摘要:语音识别(AutomaticSpeechRecognition,ASR)是人工智能领域的一项重要技术,它将人类的语音信号转换成文字。随着科技的发展,语音识别已经成为现代生活和工作中不可或缺的一部分。本文旨在介绍语音识别的基本原理、关键技术、应用场景以及未来发展趋势。一、历史与发展语音识别技术的历史可以追溯到20世纪50年代,那时的技术基于规则和模板。随着计算能力的提升和深度学习方法的出现,语
- 自动语音识别(ASR)模型全览
u013250861
#语音识别人工智能
以下为截至2024年底主流ASR模型的详细列表,涵盖传统模型、端到端模型、开源框架及商业解决方案,按技术类型分类整理,并标注适用场景:一、传统混合模型(GMM/HMM、DNN/HMM)GMM/HMM公开时间:1980年代参数量:百万级(依赖状态数)特点:基于高斯混合模型(GMM)与隐马尔可夫模型(HMM)结合,需手工对齐音素状态。适用场景:早期电话语音识别(嵌入式设备)、孤立词识别(工业控制终端)
- Assembly语言的自然语言处理
花韵婷
包罗万象golang开发语言后端
Assembly语言在自然语言处理中的应用引言自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能的一个重要分支,致力于实现计算机与人类语言之间的互动。随着计算能力的提升以及大数据的蓬勃发展,NLP在各个领域的应用如火如荼。从语音识别、机器翻译到情感分析等,NLP正在改变我们与信息之间的互动方式。不过,当前主流的NLP研究通常是用高级编程语言(如Python、Ja
- NPU的应用场景:从云端到边缘
绿算技术
NPU架构介绍缓存人工智能科技深度学习
NPU的应用场景非常广泛,主要包括以下几个方面:1.云计算与数据中心AI推理服务:在云端提供高效的AI推理服务,例如图像识别、语音识别。模型训练加速:在大规模训练任务中,NPU可以作为加速单元,提升训练效率。2.边缘计算智能摄像头:在安防监控中,NPU可以实时处理视频流,实现目标检测和跟踪。智能音箱:在语音助手中,NPU可以加速语音识别和自然语言处理任务。3.自动驾驶实时感知:NPU可以加速自动驾
- 吴恩达机器学习笔记复盘(二)监督学习和无监督学习
wgc2k
机器学习机器学习笔记学习
监督学习经济价值以及定义监督学习是机器学习中创造了99%经济价值的类型,它是学习输入到输出映射的算法,关键在于给学习算法提供包含正确答案(即给定输入X的正确标签Y)的学习例子。生活中的例子邮件分类,输入是电子邮件,输出是判断邮件是否为垃圾邮件。语音识别,输入音频剪辑,输出文本记录。机器翻译,输入一种语言文本,输出其他语言的相应翻译。在线广告,输入广告和用户信息,预测用户是否点击广告,为公司带来大量
- Python中用SpeechRecognition库和 vosk模型来识别语音
老菜鸟YDZ
菜鸟学pythonpython开发语言语音识别人工智能xcode
Python中的SpeechRecognition库是一个比较好用的语音识别模块,提供了将语音识别成文字的方法,支持中文识别。一、SpeechRecognition库的安装使用pip命令安装即可:pipinstallSpeechRecognition当安装不成功时,可以强制:pipinstall--force-SpeechRecognition二、SpeechRecognition库的导入:i
- 人工智能概念
zhangpeng455547940
计算机人工智能
机器学习、深度学习、大模型机器学习提供框架,使得系统可以从数据中学习算法:线性回归、逻辑回归、支持向量机、决策树、随机森林、K近邻算法深度学习是实现这一目标的工具,模仿人脑,使用多层神经网络进行学习算法:多层感知器、卷积神经网络、循环神经网络、长短期记忆网络大模型指参数量巨大的深度学习模型人工智能应用:自然语言处理、图像识别与生成、语音识别、政务与企业服务...
- 【自学笔记】讯飞星火基础知识点总览-持续更新
Long_poem
笔记
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录讯飞星火基础知识点总览一、讯飞星火简介二、核心功能1.语音识别2.自然语言处理3.知识图谱4.星火API三、基础概念1.AI模型2.数据处理3.交互方式四、应用场景示例1.办公场景2.学习场景3.生活场景五、总结总结讯飞星火基础知识点总览一、讯飞星火简介讯飞星火是科大讯飞推出的一款强大的AI技术平台,它集成了语音识别、自然语言
- 【Python】构建智能语音助手:使用Python实现语音识别与合成的全面指南
蒙娜丽宁
Python杂谈python语音识别开发语言
随着人工智能技术的迅猛发展,语音助手已成为人们日常生活中不可或缺的一部分。从智能手机到智能家居设备,语音交互提供了便捷高效的人机交互方式。本文旨在全面介绍如何利用Python编程语言及其强大的库——SpeechRecognition和gTTS,构建一个基础但功能完备的语音助手。文章首先概述了语音识别与合成的基本原理和关键技术,随后详细讲解了如何安装和配置必要的开发环境。通过丰富的代码示例和详细的中
- 【AI深度学习网络】Transformer时代,RNN(循环神经网络)为何仍是时序建模的“秘密武器”?
arbboter
人工智能rnn人工智能深度学习循环神经网络记忆序列数据循环连接
引言:什么是循环神经网络(RNN)?循环神经网络(RecurrentNeuralNetwork,RNN)是一种专门处理序列数据(如文本、语音、时间序列)的深度学习模型。与传统神经网络不同,RNN具有“记忆”能力,能够通过内部状态(隐藏状态)保留历史信息,从而捕捉序列中的时间依赖关系。在自然语言处理、语音识别、时间序列预测等领域,数据本质上是序列化的——即当前数据点与前后数据点存在依赖关系。传统的前
- 多模态大模型:技术原理与实战 模型压缩实战
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战模型压缩实战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:多模态大模型,技术原理,模型压缩,实战,TensorFlow,PyTorch,模型压缩方法,应用场景1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,多模态大模型在图像识别、语音识别、自然语言处理等领域的应用越来越广泛。然而,多模态大模型通常具有庞大
- 【花雕动手做】基于ESP32S3和通义千问大模型AI语音聊天机器人
驴友花雕
人工智能机器人嵌入式硬件单片机c++基于ESP32S3通义千问AI语音聊天机器人
开源项目1、核心功能:该项目利用ESP32S3开发板,结合通义千问大模型,实现了一个AI语音聊天机器人。用户可以通过语音与机器人进行交互,机器人能够理解用户的语音指令并给出相应的语音回答。2、技术架构:(1)语音识别:使用语音转文字大模型,将用户的语音输入转换为文本信息。(2)文本理解:将转换后的文本发送到通义千问大模型进行处理,模型会根据文本内容生成相应的回答。(3)语音合成:将模型生成的文本答
- 提高客户体验:人类计算在营销中的应用
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
人类计算与营销:开启个性化时代的未来人类计算与营销:开启个性化时代的未来关键词:人工智能、个性化营销、客户体验、数据驱动、客户关系管理摘要:本文探讨了人类计算在营销中的应用,包括语音识别、人脸识别、自然语言处理等技术,以及如何通过这些技术实现个性化营销、客户关系管理和用户体验优化。文章分析了当前技术的发展趋势和面临的挑战,并提出了未来发展的方向。引言随着人工智能技术的飞速发展,人类计算在各个领域中
- 嵌入式行业全景透视:前景、挑战与从业者发展路径
九溪弥烟、
技术杂谈嵌入式硬件
ARM架构各版本内核处理器总结模拟电子与数字电子:区别、联系与工程实践的侧重点为什么晶振被称为芯片的心脏?(全网最准确解释)一、行业前景:技术融合与市场扩张的双重驱动1.应用场景的泛在化渗透嵌入式系统已从传统工业控制、消费电子扩展到智能汽车、智慧医疗、边缘计算等新兴领域。例如,智能家居通过语音识别与传感器联动实现设备协同,工业4.0中嵌入式系统支撑自动化产线的实时控制与数据采集。据预测,2028年
- 【实战项目】Python 手撕一个基于最新端到端大模型的语音聊天系统
kakaZhui
解码前沿多模态大模型:认知分析和工业级实战python开发语言AIGC人工智能chatgpt
写在前面:为什么需要端到端语音交互近年来,随着深度学习技术的飞速发展,语音交互技术取得了显著的进步。从智能音箱到虚拟助手,语音交互已经渗透到我们生活的方方面面。然而,传统的语音交互系统往往采用“语音识别(ASR)-自然语言理解(NLU)-对话管理(DM)-自然语言生成(NLG)-语音合成(TTS)”的级联式架构,这种架构存在着诸多弊端,如:错误累积:每个模块的错误都会传递到下一个模块,导致最终结果
- 【有啥问啥】深入浅出:大模型应用工具 Ollama 技术详解
有啥问啥
大模型科普人工智能深度学习
深入浅出:大模型应用工具Ollama技术详解引言近年来,大型模型(LargeModels,LLMs)技术突飞猛进,在自然语言处理、计算机视觉、语音识别等领域展现出强大的能力。然而,部署和运行这些庞大的模型往往面临着环境配置复杂、资源需求高昂等挑战。为了解决这些痛点,Ollama应运而生。本文将深入探讨Ollama,一个旨在简化大模型本地运行和管理的开源工具,帮助读者理解其核心概念、优势以及应用场景
- TORGO 数据库:构音障碍语音研究的宝贵资源
帅小柏
语音识别与Wenet实战语音识别与ESPnet实战语音识别
TORGO数据库:构音障碍语音研究的宝贵资源在语音识别和语音病理学领域,构音障碍(Dysarthria)是一个重要的研究方向。构音障碍是由神经运动接口异常引起的,导致发音器官运动异常,语音不清晰,传统自动语音识别(ASR)系统难以有效识别。为了推动这一领域的研究,多伦多大学开发了TORGO数据库,这是一个包含构音障碍患者和正常对照组语音数据的宝贵资源。1.数据库简介TORGO数据库是由多伦多大学计
- 人工智能基础知识
yzx991013
人工智能
首先分为两大类:一:机器视觉cv1.特征比较明显2.经典模型:cnn,resnet,deepface,yolov(1-12),vi-transformer。缺点:不能解决收听问题。3.落地,无人识别,轨道追踪,无人驾驶,(主要解决看的东西)。二:自然语言处理nlp(语音识别)处理(文本)方面解决(说和听的问题),RNN,LSTM,attention,transformer(基于规则的翻译,超越普通
- 服务器、群晖,飞牛NAS等部署Whisper ASR教程来啦!让我们的Nas轻松实现音频转文字服务!
xiaoqiangclub
群晖助手服务器whisper音视频ASR语音转文字实用教程
文章目录介绍演示环境服务器/群晖/飞牛NAS部署WhisperASR,语音识别soeasy!准备部署使用Python调用示例注意事项⚓️相关链接⚓️介绍最近有人私信我,有没有什么办法能在NAS上搞个语音识别服务,实现将语音或开会录音自动转成文字?那么今天我们就一起来看看如何在服务器或群晖/飞牛等Nas上部署一个语音转文字的服务,让我们的NAS瞬间变身“听译”大师!演示环境本文演示环境如下:群晖系统
- 神经网络VS决策树
Persistence is gold
神经网络决策树人工智能
神经网络(NeuralNetworks)和决策树(DecisionTrees)是两种不同的机器学习算法,各自具有独特的优点和适用场景。以下是它们的详细比较:神经网络优点:强大的学习能力:神经网络,尤其是深度神经网络,能够自动学习数据中的复杂特征,可以处理高维和非线性的问题。适用性广泛:神经网络适用于分类、回归、图像处理、语音识别、自然语言处理等多种任务。多层结构:通过增加隐藏层,神经网络可以逐层提
- windows实现麦克风持续实时实现科大讯飞语音识别,判断声音是否停止并生成pcm文件
青年夏日科技工作者
语音识别人工智能
importpyaudio,waveimportnumpyasnpdeflisten():temp=20CHUNK=1024FORMAT=pyaudio.paInt16CHANNELS=1RATE=16000RECORD_SECONDS=2SAMPLE_WIDTH=2#2bytespersampleWAVE_OUTPUT_FILENAME='test.wav'mindb=2000#最小声音,大于则
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。