DGL | 基于深度图学习框架DGL的分子图初探

DGL简介

        纽约大学、纽约大学上海分校、AWS上海研究院以及AWS MXNet Science Team共同开源了一个面向图神经网络及图机器学习的全新框架,命名为Deep Graph Library(DGL)。

        在设计上,DGL秉承三项原则:

  1. DGL必须和目前的主流的深度学习框架(Pytorch, MXNet, Tensorflow等)无缝衔接。从而实现从传统的tensor运算到图运算的自由转换。
  2. DGL应该提供最少的API以降低用户的学习门槛。
  3. 在保证以上两点的基础之上,DGL能高效并透明地并行图上的计算,以及能很方便地扩展到巨图上。

DGL与化学

个人关注的是药物模型,用于分子性质预测,生成和优化的各种模型,DGL 致力于将GNN(图形神经网络)应用于化学领域,并且作为分子生成模型,DGMG(图形的深度生成模型)和JT-VAE(连接树变分自动编码器),并且发行说明中有一个使用DGMG的非常简单的示例。

性质预测

为了评估候选药物分子,我们需要了解其性质和活性。实际上,这主要是通过湿实验室实验来实现的。我们可以将该问题转换为回归或分类问题。实际上,由于标记数据的缺乏,这可能非常困难。

特征化与表征学习

指纹已经成为化学信息学中广泛使用的概念。化学家开发了一种规则,将分子转换为二进制字符串,其中每个位都表明存在或不存在特定的子结构。指纹的发展使分子的比较

你可能感兴趣的:(RDKit,化学信息学与AI)