大数据实战之Logstash采集->Kafka->ElasticSearch检索

 1. Logstash概述

  Logstash的官网地址为:https://www.elastic.co/cn/products/logstash,以下是官方对Logstash的描述。

大数据实战之Logstash采集->Kafka->ElasticSearch检索_第1张图片

 Logstash是与Flume类似,也是一种数据采集工具,区别在于组件和特性两大方面。常用的数据采集工具有Sqoop、Flume、Logstash,计划将单独写一篇博文论述它们之间的区别,所以这里就不赘述,感兴趣可关注后期的博文。

2. Kafka概述

  Kafka的官网是:http://kafka.apache.org/,官方的介绍如下图:

大数据实战之Logstash采集->Kafka->ElasticSearch检索_第2张图片

  总结来说,Kafka是一个分布式消息队列,具有生产者和消费者的功能,它依赖Zookeeper集群来保存meta数据,根据Topic来归类存储的消息,Kafka集群由多个实例组成,每个实例称为broker。

3. ElasticSearch概述

 ElasticSearch是一个分布式的搜索和数据分析引擎。它的官网是:https://www.elastic.co/cn/products/elasticsearch,官方对ElasticSearch的描述如下,通过官方的描述能够对ElasticSearch有一个整体的了解。

大数据实战之Logstash采集->Kafka->ElasticSearch检索_第3张图片

3. 编程实战

 3.1 小项目介绍

 在VM的linux本地logserver目录下存有模拟数据data.log,启动一个logstash监视Linux的logserver目录的data.log日志文件,当日志文件发生了修改,将日志文件采集到Kafka消息队列的名为logs的Topic中,另启动一个logstash将Kafka的消息采集到ElashticSearch,使用ElasticSearch检索数据。

  大数据实战之Logstash采集->Kafka->ElasticSearch检索_第4张图片

 3.2 开发环境

 系统环境: VM中存在三台Linux机器(bigdata12,bigdata14,bigdata15)

 软件环境:kafka_2.11-0.9.0.1、zookeeper-3.4.10、elasticsearch-2.4.4、logstash-2.3.1

 3.3 环境准备

 1. 首先在三台机器开启zookeeper,各机器运行zkServer.sh start,Linux下查看是否有然后使用zkServer.sh status查看zookeeper的状态,如果看到leader和follower角色的出现就代表运行正常。 

 2. 三台启动Kafka,到kafka目录下,运行 nohup bin/kafka-server-start.sh conf/serverproperties.conf。使用

 3. 使用非root用户启动elasticsearch,使用非root用户进入elasticsearch目录执行: bin/elasticsearch -d

 注意,必须是非root用户,否则会报错。如果没有,就创建一个用户。

    例如创建一个用户为zhou的话,执行:

  (1) 添加用户:useradd bigdata,

  (2) 为用户添加密码 :echo 123456 | passwd --stdin zhou,

  (3) 将zhou添加到sudoers: echo "bigdata ALL = (root) NOPASSWD:ALL" | tee /etc/sudoers.d/zhou

  (4) 修改权限: chmod 0440 /etc/sudoers.d/zhou

  (5) 从root切换成zhou: su - zhou 

  (6) 然后再执行启动elasticsearch命令

 4. 检查进程运行情况

  在Linux环境下执行jps命令查看进程是否正常启动,每台机器查看是否有以下进程

  大数据实战之Logstash采集->Kafka->ElasticSearch检索_第5张图片

 在elasticsearch安装了head的前提下,在windows环境开启浏览器,在地址栏输入http://ip地址:9200/_plugin/head ,例如,根据我的配置,输入了http://192.168.243.11:9200/_plugin/head。出现以下界面,表示Elasticsearch启动正常

 大数据实战之Logstash采集->Kafka->ElasticSearch检索_第6张图片

 在以上环节确认后,就代表环境启动运行正常,可以进行正常开发程序。

 3.4 开发

 3.4.1 编写logstash配置

 在bigdata12机器中进入logstash的conf目录:

 vi dataTokafka.conf

 1 input {
 2   file {
 3         codec => plain {
 4         charset => "UTF-8"
 5     }
 6     path => "/root/logserver/supernova.log"
 7     discover_interval => 5
 8     start_position => "beginning"
 9   }
10 }
11 
12 output {
13     kafka {
14           topic_id => "supernova"
15           codec => plain {
16           format => "%{message}"
17           charset => "UTF-8"
18       }
19           bootstrap_servers => "bigdata12:9092,bigdata14:9092,bigdata15:9092"
20     }
21 }

 在bigdata14机器中进入logstash的conf目录:

  vi dataToElastic.conf

input {
  kafka {
    type => "supernova"
    auto_offset_reset => "smallest"
    codec => "plain"
    group_id => "elas2"
    topic_id => "supernova"
    zk_connect => "bigdata12:2181,bigdata14:2181,bigdata15:2181"
  }
}
filter {
  if [type] == "supernova" {
    mutate {
      split => { "message" => "|" }
      add_field => {
                "id" => "%{message[0]}"
                "time" => "%{message[1]}"
                "ip" => "%{message[2]}"
                "user" => "%{message[3]}"
     }
     remove_field => [ "message" ]
   }
  }
}
output {
  if [type] == "supernova" {
    elasticsearch {
      index => "supernova"
      codec => plain {
        charset => "UTF-16BE"
      }
      hosts => ["bigdata12:9200", "bigdata14:9200", "bigdata15:9200"]
    }
  }
}

 3.4.2 运行

 (1) 在bigdata12机器中,使用3.4.1中的dataTokakfa.conf启动logstash。执行:bin/logstash -f conf/dataTokakfa.conf,监听supernova.log文件

 (2) 在bigdata14机器中,使用3.4.1中的dataToElastic.conf启动logstach。执行:bin/logstash -f conf/dataToElastic.conf,将Kafka数据采集到Elasticsearch。

 (3) 为了便于观察,在bigdata15机器中,启动kafka消费者,查看Topic中的数据。执行:bin/kafka-console-consumer.sh --zookeeper bigdata11:2181 --from-beginning --topic logs,用于消费Kafka中Topic名为logs的消息。

 (4) 编辑修改Logstash监听的supernova.log文件。

 启动】:

大数据实战之Logstash采集->Kafka->ElasticSearch检索_第7张图片

 

 【修改】在bigdata15中修改了数据(右下角窗口)

大数据实战之Logstash采集->Kafka->ElasticSearch检索_第8张图片

 

【监视过程】:bigdata15中(右上),kafka的consumer消费到了supernova.log文件中的数据,在bigdata14中,可以看到将数据传至ElasticSearch的数据(左下)

大数据实战之Logstash采集->Kafka->ElasticSearch检索_第9张图片

【ElasticSeach结果】

  可以看到Elastic集群中,产生了一个supernova的type(类似关系数据库中的database)

 大数据实战之Logstash采集->Kafka->ElasticSearch检索_第10张图片

 【查看ElasticSearch数据】

大数据实战之Logstash采集->Kafka->ElasticSearch检索_第11张图片

 3.4.2 ElasticSearch检索

    使用Junit单元测试的方法来编写测试方法,代码如下:

 EalsticSearch.java

package novaself;

import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.Client;
import org.elasticsearch.client.transport.TransportClient;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.transport.InetSocketTransportAddress;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.junit.Before;
import org.junit.Test;

import java.net.InetAddress;
import java.util.Iterator;

/**
 * @author Supernova
 * @date 2018/06/22
 */
public class ElasticSearch  {

    private Client client;

    /**
     * 获取客户端
     */
    @Before
    public void getClient() throws Exception {
        // ElasticSearch服务默认端口9300
        Settings settings = Settings.settingsBuilder()
                .put("cluster.name", "bigdata").build();
        client = TransportClient.builder().settings(settings).build()
                .addTransportAddress(new InetSocketTransportAddress(
                        InetAddress.getByName("bigdata12"), 9300))
                .addTransportAddress(new InetSocketTransportAddress(
                        InetAddress.getByName("bigdata14"), 9300))
                .addTransportAddress(new InetSocketTransportAddress(
                        InetAddress.getByName("bigdata15"), 9300));
    }

    /**
     * 词条查询: 用户名中有"新"字的数据
     */
    @Test
    public void testTermQuery(){
        /*
         * termQuery词条查询: 只匹配指定字段中含有该词条的文档
         * 查询user字段为超新星的记录
         */
        SearchResponse response = client.prepareSearch("supernova")
                .setTypes("supernova")
                .setQuery(QueryBuilders.termQuery("user","新"))
                .get();

        // 获取结果集对象、命中数
        SearchHits hits = response.getHits();
        // 使用迭代器遍历数据
        Iterator iter = hits.iterator();
        while(iter.hasNext()){
            SearchHit hit = iter.next();
            // 以Json格式输出
            String result = hit.getSourceAsString();
            System.out.println(result);
        }

        //关闭客户端
        client.close();
    }
    /**
     * 模糊查询: 星期四的数据
     */
    @Test
    public void testWildcardQuery() throws Exception{
        /*
         * wildcardQuery模糊查询,time字段中包含"四"的数据
         */
        SearchResponse response = client.prepareSearch("supernova")
                .setTypes("supernova")
                .setQuery(QueryBuilders.wildcardQuery("time","四"))
                .get();


        // 获取结果集对象、命中数
        SearchHits hits = response.getHits();
        // 使用迭代器遍历数据
        Iterator iter = hits.iterator();
        while(iter.hasNext()){
            SearchHit hit = iter.next();
            // 以Json格式输出
            String result = hit.getSourceAsString();
            System.out.println(result);
        }

        //关闭客户端
        client.close();
    }
}

【检索结果】:

  词条查询:testTermQuery( )方法的运行结果:

大数据实战之Logstash采集->Kafka->ElasticSearch检索_第12张图片

 模糊查询:testWildcardQuery ( )方法的运行结果:

大数据实战之Logstash采集->Kafka->ElasticSearch检索_第13张图片

 

你可能感兴趣的:(ElasticSearch,Kafka,Logstash)