Gary Marcus再发万字长文,列14个Q&A回应机器学习批判言论

“所有的真理都经历了三个阶段:第一,被嘲笑; 第二,被强烈反对;第三,被不证自明地接受。“Gary Marcus引用叔本华的这段话为自己的另一篇万字长文进行了开篇,以回应他近期面对的“推特上的成千上万条质疑”。

1月初,一直对深度学习持质疑态度的纽约大学教授、人工智能创业者Gary Marcus在arxiv上发布了一篇长文,列举十大理由,质疑深度学习的局限性,在AI学术圈又掀起了一轮波澜。

Gary Marcus文章地址:

https://arxiv.org/ftp/arxiv/papers/1801/1801.00631.pdf

今天凌晨,针对学术圈(推特圈)对这篇文章的质疑(查看大数据文摘相关报道《Marcus十大理由质疑深度学习?LeCun说大部分错了》), Marcus又发了一篇长文,他总结了这次论战中14个常见的问题,并一一给出答案,来回应各种挑战。

无监督学习更适合哪些领域?

为什么我不会谬赞深度学习?

为什么我最有权讨论这件事?

Gary Marcus是被Uber收购的人工智能初创公司 Geometric Intelligence 的创始人兼CEO,同时是纽约大学心理学及神经科学教授。大数据文摘对这些问题进行了摘要,以下为精华内容:

质疑1. 什么是通用人工智能(general intelligence)?

机器学习的著名教授、迄今为止最佳评论家Thomas Dietterich教授给出了一个很好的答案,我很满意:

“通用人工智能”是一个广泛目标和环境下的智能系统。例如,参见Russell和Norvig的教科书,以及他们对“智能“的定义——“理性行事”。

质疑2. Marcus对深度学习不够友好,他没有提及深度学习的各种成绩,并低估了其他人(的研究)。

上面提到的Dietterich提出了这两点:

@GaryMarcus的文章令人失望。他几乎没有谈到深度学习的成就(如NL翻译),并低估了其成绩(例如有1000个类别的ImageNet依然很有限)。

关于深度学习的成绩,我确实可以说得更多,但我不是没有说,我在第一页提到了深度学习的成就:“自那时以来,深度学习在语音识别,图像识别和语言翻译等领域取得了许多成就,并在当前广泛的AI应用中发挥着重要作用。”

并且,在文章最后我引用了几个文本和博客,提及了很多例子。不过,这些大部分并不算是通用人工智能,这是我的论文的主要论点。 (例如,Google翻译做得很棒,但其并不是通用的,例如,它不能像人类翻译员那样,回答关于翻译内容的问题。)

质疑的第二部分更具实质性。 1,000个类别真的非常有限吗?与认知的灵活性相比,我认为是的。认知科学家通常认为,每个人认知的元素概念大概有5万个数量级,我们可以很容易将这些概念组合,获得更多的复杂想法。

你可以在谷歌图像上搜索的“宠物鱼”,给出的图片还不错;但是,再试一下“佩戴护目镜的宠物鱼”,你会搜到大量带护目镜的狗的图片,误报率超过80%。在辨认狗的种类这种问题上,机器会比人类更强,但是在描述复杂场景的时候,人类更有利。

在我看来,把机器学习问题集中在1000个类别块上,也限制了其解决更开放的问题(比如场景和句子理解)。

质疑3. Marcus说深度学习是无用的,但深度学习对很多问题都很有用。

深度学习当然是有用的,我的观点是:

在目前的监督学习形式下,深度学习可能正在接近其极限,

这些极限将使通用人工智能不能完全实现。

我的结论的核心是这样的:

尽管我勾勒了许多问题,但我不认为我们需要放弃深度学习。

相反,我们需要对其进行重新概念化:不是作为一种普遍的溶剂,而是作为众多工具中的一种。如果深度学习比喻为电动螺丝刀,那么我们还需要锤子、扳手和钳子。

质疑4. Marcus说DL对分层结构不好,但LeCun的《自然》综述中说,其特别适合于这样的层次结构。

阅读原文

你可能感兴趣的:(Gary Marcus再发万字长文,列14个Q&A回应机器学习批判言论)