首先先来看一下Arrays.sort()使用的例子。
例子1:
Arrays.sort(int[] a)
//注意一定要用Integer对象类
Integer[] a1 = {34, 57, 46, 89, 98, 12, 55, 84, 29};
Integer[] a2 = {34, 57, 46, 89, 98, 12, 55, 84, 29};
//增序,Arrays.sort()默认升序
Arrays.sort(a1);
System.out.println("Arrays.sort()升序:");
for (int i = 0; i < a1.length; i++) {
System.out.print(a1[i] + " ");
}
//降序,可用Comparator()匿名内部类
Arrays.sort(a2, new Comparator() {
@Override
public int compare(Integer o1, Integer o2) {
return o2.compareTo(o1);
}
});
System.out.println("\nArrays.sort()降序:");
for (int i = 0; i < a2.length; i++) {
System.out.print(a2[i]+ " ");
}
基础知识点:
运行结果如下:
Arrays.sort()升序: 12 29 34 46 55 57 84 89 98
Arrays.sort()降序: 98 89 84 57 55 46 34 29 12
例子2
Arrays.sort(int[] a, int fromIndex, int toIndex)
//注意一定要用Integer对象类
Integer[] a1 = {34, 57, 46, 89, 98, 12, 55, 84, 29};
//对数组中的第四位到第7位(不包含第七位)(左闭右开原则)进行排序
Arrays.sort(a1,3,6);
System.out.println("Arrays.sort()升序:");
for (int i = 0; i < a1.length; i++) {
System.out.print(a1[i] + " ");
}
结合文档以及源代码,我们发现,jdk中的Arrays.sort()的实现是通过所谓的双轴快排的算法
双轴快排:
下面我们以JDK1.8中Arrays对int型数组的排序为例来介绍其中使用的双轴快排:
1.判断数组的长度是否大于286,大于则使用归并排序(merge sort),否则执行2。
// Use Quicksort on small arrays
if (right - left < QUICKSORT_THRESHOLD) {
sort(a, left, right, true);
return;
}
// Merge sort
......
2.判断数组长度是否小于47,小于则直接采用插入排序(insertion sort),否则执行3。
// Use insertion sort on tiny arrays
if (length < INSERTION_SORT_THRESHOLD) {
// Insertion sort
......
}
3.用公式length/8+length/64+1近似计算出数组长度的1/7。
// Inexpensive approximation of length / 7
int seventh = (length >> 3) + (length >> 6) + 1;
4.取5个根据经验得出的等距点。
/*
* Sort five evenly spaced elements around (and including) the
* center element in the range. These elements will be used for
* pivot selection as described below. The choice for spacing
* these elements was empirically determined to work well on
* a wide variety of inputs.
*/
int e3 = (left + right) >>> 1; // The midpoint
int e2 = e3 - seventh;
int e1 = e2 - seventh;
int e4 = e3 + seventh;
int e5 = e4 + seventh;
5.将这5个元素进行插入排序
// Sort these elements using insertion sort
if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; }
if (a[e3] < a[e2]) { int t = a[e3]; a[e3] = a[e2]; a[e2] = t;
if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
}
if (a[e4] < a[e3]) { int t = a[e4]; a[e4] = a[e3]; a[e3] = t;
if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
}
}
if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t;
if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
}
}
}
6.选取a[e2],a[e4]分别作为pivot1,pivot2。由于步骤5进行了排序,所以必有pivot1 <=pivot2。定义两个指针less和great,less从最左边开始向右遍历,一直找到第一个不小于pivot1的元素,great从右边开始向左遍历,一直找到第一个不大于pivot2的元素。
/*
* Use the second and fourth of the five sorted elements as pivots.
* These values are inexpensive approximations of the first and
* second terciles of the array. Note that pivot1 <= pivot2.
*/
int pivot1 = a[e2];
int pivot2 = a[e4];
/*
* The first and the last elements to be sorted are moved to the
* locations formerly occupied by the pivots. When partitioning
* is complete, the pivots are swapped back into their final
* positions, and excluded from subsequent sorting.
*/
a[e2] = a[left];
a[e4] = a[right];
/*
* Skip elements, which are less or greater than pivot values.
*/
while (a[++less] < pivot1);
while (a[--great] > pivot2);
7.接着定义指针k从less-1开始向右遍历至great,把小于pivot1的元素移动到less左边,大于pivot2的元素移动到great右边。这里要注意,我们已知great处的元素小于pivot2,但是它于pivot1的大小关系,还需要进行判断,如果比pivot1还小,需要移动到到less左边,否则只需要交换到k处。
/*
* Partitioning:
*
* left part center part right part
* +--------------------------------------------------------------+
* | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 |
* +--------------------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot1
* pivot1 <= all in [less, k) <= pivot2
* all in (great, right) > pivot2
*
* Pointer k is the first index of ?-part.
*/
outer:
for (int k = less - 1; ++k <= great; ) {
int ak = a[k];
if (ak < pivot1) { // Move a[k] to left part
a[k] = a[less];
/*
* Here and below we use "a[i] = b; i++;" instead
* of "a[i++] = b;" due to performance issue.
*/
a[less] = ak;
++less;
} else if (ak > pivot2) { // Move a[k] to right part
while (a[great] > pivot2) {
if (great-- == k) {
break outer;
}
}
if (a[great] < pivot1) { // a[great] <= pivot2
a[k] = a[less];
a[less] = a[great];
++less;
} else { // pivot1 <= a[great] <= pivot2
a[k] = a[great];
}
/*
* Here and below we use "a[i] = b; i--;" instead
* of "a[i--] = b;" due to performance issue.
*/
a[great] = ak;
--great;
}
}
8.将less-1处的元素移动到队头,great+1处的元素移动到队尾,并把pivot1和pivot2分别放到less-1和great+1处。
// Swap pivots into their final positions
a[left] = a[less - 1]; a[less - 1] = pivot1;
a[right] = a[great + 1]; a[great + 1] = pivot2;
9.至此,less左边的元素都小于pivot1,great右边的元素都大于pivot2,分别对两部分进行同样的递归排序。
// Sort left and right parts recursively, excluding known pivots
sort(a, left, less - 2, leftmost);
sort(a, great + 2, right, false);
10.对于中间的部分,如果大于4/7的数组长度,很可能是因为重复元素的存在,所以把less向右移动到第一个不等于pivot1的地方,把great向左移动到第一个不等于pivot2的地方,然后再对less和great之间的部分进行递归排序。
/*
* If center part is too large (comprises > 4/7 of the array),
* swap internal pivot values to ends.
*/
if (less < e1 && e5 < great) {
/*
* Skip elements, which are equal to pivot values.
*/
while (a[less] == pivot1) {
++less;
}
while (a[great] == pivot2) {
--great;
}
}
......
// Sort center part recursively
sort(a, less, great, false);
另外参考了其他博文,算法思路如下:
算法步骤
1.对于很小的数组(长度小于47),会使用插入排序。
2.选择两个点P1,P2作为轴心,比如我们可以使用第一个元素和最后一个元素。
3.P1必须比P2要小,否则将这两个元素交换,现在将整个数组分为四部分:
(1)第一部分:比P1小的元素。
(2)第二部分:比P1大但是比P2小的元素。
(3)第三部分:比P2大的元素。
(4)第四部分:尚未比较的部分。
在开始比较前,除了轴点,其余元素几乎都在第四部分,直到比较完之后第四部分没有元素。
4.从第四部分选出一个元素a[K],与两个轴心比较,然后放到第一二三部分中的一个。
5.移动L,K,G指向。
6.重复 4 5 步,直到第四部分没有元素。
7.将P1与第一部分的最后一个元素交换。将P2与第三部分的第一个元素交换。
8.递归的将第一二三部分排序。
**总结:**Arrays.sort对升序数组、降序数组和重复数组的排序效率有了很大的提升,这里面有几个重大的优化。
1.对于小数组来说,插入排序效率更高,每次递归到小于47的大小时,用插入排序代替快排,明显提升了性能。
2.双轴快排使用两个pivot,每轮把数组分成3段,在没有明显增加比较次数的情况下巧妙地减少了递归次数。
3.pivot的选择上增加了随机性,却没有带来随机数的开销。
4.对重复数据进行了优化处理,避免了不必要交换和递归。