目标
• 学习使用不同的低通滤波器对图像进行模糊
• 使用自定义的滤波器对图像进行卷积(2D 卷积)
2D 卷积
与一维信号一样,我们也可以对 2D 图像实施低通滤波(LPF),高通滤波(HPF)等。 LPF 帮助我们去除噪音,模糊图像。 HPF 帮助我们找到图像的边缘。
OpenCV 提供的函数 cv2.filter2D() 可以让我们对一幅图像进行卷积操作。下面我们将对一幅图像使用平均滤波器。下面是一个 5x5 的均值滤波器核:
均值滤波示例如下:
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('opencv_logo.jpg')
# 直接使用 cv2.blur()函数进行均值滤波
blur = cv2.blur(img, (5, 5))
# 通过numpy构建均值滤波器模板,再使用cv2.filter2D()函数滤波
kernel = np.ones((5, 5), np.float32)/25
dst = cv2.filter2D(img, -1, kernel)
imgName = [img, blur, dst]
titleName = ['Original', 'Blurred', 'Averaged']
for i in range(3):
plt.subplot(1, 3, i+1), plt.imshow(imgName[i]), plt.title(titleName[i])
plt.xticks([]), plt.yticks([])
plt.show()
效果如下图:
图像模糊(图像平滑)
使用低通滤波器可以达到图像模糊的目的。这对与去除噪音很有帮助。其实就是去除图像中的高频成分(比如:噪音,边界)。所以边界也会被模糊一点。(当然,也有一些模糊技术不会模糊掉边界)。OpenCV 提供了四种模糊技术。
这是由一个归一化卷积框完成的。用卷积框覆盖区域内所有像素的平均值来代替中心元素的像素值。可以使用函数 cv2.blur() 或cv2.boxFilter() 来完这个任务(代码示例和上面的一样)。可以同看查看文档了解更多卷积框的细节。我们需要设定卷积框的宽和高。下面是一个 3x3 的归一化卷积框:
注意:如果你不想使用归一化卷积框,你应该使用 cv2.boxFilter(),这时要传入参数 normalize=False。
实现高斯滤波的函数是 cv2.GaussianBlur()。我们需要指定高斯核的宽和高(必须是奇数)。以及高斯函数沿 X,Y 方向的标准差。如果我们只指定了 X 方向的的标准差, Y 方向也会取相同值。如果两个标准差都是 0,那么函数会根据核函数的大小自己计算。高斯滤波可以有效的从图像中去除高斯噪音。你也可以使用函数 cv2.getGaussianKernel() 自己构建一个高斯核。
如果要使用高斯模糊的话,上面的代码应该写成:
# 下面参数 0 是指根据窗口大小(5,5)来自动计算高斯函数标准差
blur = cv2.GaussianBlur(img, (5,5), 0)
中值滤波器经常用来去除椒盐噪声。前面的滤波器都是用计算得到的一个新值来取代中心像素的值,而中值滤波是用中心像素周围(也可以使他本身)的值来取代他。他能有效的去除噪声。卷积核的大小也应该是一个奇数。
在这个例子中,我们给原始图像加上 50% 的噪声然后再使用中值模糊。
median_img = cv2.medianBlur(img, 5)
双边滤波函数是 cv2.bilateralFilter() ,双边滤波能在保持边界清晰的情况下有效的去除噪音。但是这种操作与其他滤波器相比会比较慢。我们已经知道高斯滤波器是求中心点邻近区域像素的高斯加权平均值。这种高斯滤波器只考虑像素之间的空间关系,而不会考虑像素值之间的关系(像素的相似度)。所以这种方法不会考虑一个像素是否位于边界。因此边界也会被模糊掉,而这正不是我们想要的。
双边滤波在同时使用空间高斯权重和灰度值相似性高斯权重。空间高斯函数确保只有邻近区域的像素对中心点有影响,灰度值相似性高斯函数确保只有与中心像素灰度值相近的才会被用来做模糊运算。所以这种方法会确保边界不会被模糊掉,因为边界处的灰度值变化比较大。
进行双边滤波的代码如下:
# cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace, dst=None, borderType=None)
# d – Diameter of each pixel neighborhood that is used during filtering.
# If it is non-positive, it is computed from sigmaSpace
# 9:邻域直径,两个75 分别是空间高斯函数标准差,灰度值相似性高斯函数标准差
blur = cv2.bilateralFilter(img, 9, 75, 75)
结果如下图,图中的纹理被模糊掉了,但是边界还在:
更多资源:1. Details about the bilateral filtering
参考资料:1. 《OpenCV-Python 中文教程》(段力辉 译)
2. OpenCV-Python官方文档