ResNeSt——ResNet最强改进版

论文地址:https://hangzhang.org/files/resnest.pdf

github:https://github.com/zhanghang1989/ResNeSt

 

1. 先来看看作者,都是大牛,感谢给我们提供优越的网络,并且开源

ResNeSt——ResNet最强改进版_第1张图片 Caption

 

2. 再来看看网络的性能

        在图像识别,目标检测和图像分割都有长点,说明网络的泛化能力极强。

ResNeSt——ResNet最强改进版_第2张图片 Caption

        ResNeSt在图像分类上中ImageNet数据集上超越了其前辈ResNet、ResNeXt、SENet以及EfficientNet。使用ResNeSt-50为基本骨架的Faster-RCNN比使用ResNet-50的mAP要高出3.08%。使用ResNeSt-50为基本骨架的DeeplabV3比使用ResNet-50的mIOU要高出3.02%。涨点效果非常明显。

 

3. 直接看重点,Split-Attention模块

ResNeSt——ResNet最强改进版_第3张图片 Caption

       从左到右分别是SENet, SKNet, ResNeSt的网络结构,Split-Attention其本质可理解为切片的注意力监督机制。

ResNeSt——ResNet最强改进版_第4张图片 Caption

         每个Cardinal的实现细节,悄悄告诉你,看代码会更加清楚哦!像不像多个SENet的组合?哈哈哈。。。

 

4. 开源的模型是从ResNeSt50开始的,怎么用ResNeSt18呢? 博主给你答案

       在官方代码中添加下面的一段代码,就可以调用ResNeSt18了,是不是很简单。

def resnest18(pretrained=False, root='~/.encoding/models', **kwargs):
    model = ResNet(Bottleneck, [2, 2, 2, 2],
                   radix=2, groups=1, bottleneck_width=64,
                   deep_stem=True, stem_width=32, avg_down=True,
                   avd=True, avd_first=False, **kwargs)
   
    if pretrained:
        # 官方没有提供resnest18的预训练模型,我这里用resnest50的预训练模型加载
        weight = torch.hub.load_state_dict_from_url(
            resnest_model_urls['resnest50'], progress=True, check_hash=True)
        model_dict = model.state_dict()
        for k,v  in weight.items():
            if k in model_dict.keys():
                model_dict[k] = v
        model.load_state_dict(model_dict)
    return model

5. 测试一下

   整体代码是这样的

##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## Email: [email protected]
## Copyright (c) 2020
##
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
"""ResNeSt models"""

import torch
from resnet import ResNet, Bottleneck

__all__ = ['resnest50', 'resnest101', 'resnest200', 'resnest269']

_url_format = 'https://hangzh.s3.amazonaws.com/encoding/models/{}-{}.pth'

_model_sha256 = {name: checksum for checksum, name in [
    ('528c19ca', 'resnest50'),
    ('22405ba7', 'resnest101'),
    ('75117900', 'resnest200'),
    ('0cc87c48', 'resnest269'),
    ]}



def short_hash(name):
    if name not in _model_sha256:
        raise ValueError('Pretrained model for {name} is not available.'.format(name=name))
    return _model_sha256[name][:8]

resnest_model_urls = {name: _url_format.format(name, short_hash(name)) for
    name in _model_sha256.keys()
}


# 博主添加的
def resnest18(pretrained=False, root='~/.encoding/models', **kwargs):
    model = ResNet(Bottleneck, [2, 2, 2, 2],
                   radix=2, groups=1, bottleneck_width=64,
                   deep_stem=True, stem_width=32, avg_down=True,
                   avd=True, avd_first=False, **kwargs)
   
    if pretrained:
        # 官方没有提供resnest18的预训练模型,我这里用resnest50的预训练模型加载
        weight = torch.hub.load_state_dict_from_url(
            resnest_model_urls['resnest50'], progress=True, check_hash=True)
        model_dict = model.state_dict()
        for k,v  in weight.items():
            if k in model_dict.keys():
                model_dict[k] = v
        model.load_state_dict(model_dict)
    return model



def resnest50(pretrained=False, root='~/.encoding/models', **kwargs):
    model = ResNet(Bottleneck, [3, 4, 6, 3],
                   radix=2, groups=1, bottleneck_width=64,
                   deep_stem=True, stem_width=32, avg_down=True,
                   avd=True, avd_first=False, **kwargs)
    if pretrained:
        model.load_state_dict(torch.hub.load_state_dict_from_url(
            resnest_model_urls['resnest50'], progress=True, check_hash=True))
    return model

def resnest101(pretrained=False, root='~/.encoding/models', **kwargs):
    model = ResNet(Bottleneck, [3, 4, 23, 3],
                   radix=2, groups=1, bottleneck_width=64,
                   deep_stem=True, stem_width=64, avg_down=True,
                   avd=True, avd_first=False, **kwargs)
    if pretrained:
        model.load_state_dict(torch.hub.load_state_dict_from_url(
            resnest_model_urls['resnest101'], progress=True, check_hash=True))
    return model

def resnest200(pretrained=False, root='~/.encoding/models', **kwargs):
    model = ResNet(Bottleneck, [3, 24, 36, 3],
                   radix=2, groups=1, bottleneck_width=64,
                   deep_stem=True, stem_width=64, avg_down=True,
                   avd=True, avd_first=False, **kwargs)
    if pretrained:
        model.load_state_dict(torch.hub.load_state_dict_from_url(
            resnest_model_urls['resnest200'], progress=True, check_hash=True))
    return model

def resnest269(pretrained=False, root='~/.encoding/models', **kwargs):
    model = ResNet(Bottleneck, [3, 30, 48, 8],
                   radix=2, groups=1, bottleneck_width=64,
                   deep_stem=True, stem_width=64, avg_down=True,
                   avd=True, avd_first=False, **kwargs)
    if pretrained:
        model.load_state_dict(torch.hub.load_state_dict_from_url(
            resnest_model_urls['resnest269'], progress=True, check_hash=True))
    return model



if __name__ == "__main__":
    net = resnest18(pretrained=True)
    print(net)

        运行一下,加载了预训练模型,ResNeSt18的网络结构如下:

ResNet(
  (conv1): Sequential(
    (0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU(inplace=True)
    (3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (5): ReLU(inplace=True)
    (6): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  )
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): SplAtConv2d(
        (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
        (bn0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (fc1): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
        (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (fc2): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1))
      )
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): AvgPool2d(kernel_size=1, stride=1, padding=0)
        (1): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): SplAtConv2d(
        (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
        (bn0): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (fc1): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1))
        (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (fc2): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1))
      )
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
  )
  (layer2): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (avd_layer): AvgPool2d(kernel_size=3, stride=2, padding=1)
      (conv2): SplAtConv2d(
        (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
        (bn0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (fc1): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (fc2): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
      )
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): AvgPool2d(kernel_size=2, stride=2, padding=0)
        (1): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): SplAtConv2d(
        (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
        (bn0): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (fc1): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (fc2): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
      )
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
  )
  (layer3): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (avd_layer): AvgPool2d(kernel_size=3, stride=2, padding=1)
      (conv2): SplAtConv2d(
        (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
        (bn0): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (fc1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (fc2): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
      )
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): AvgPool2d(kernel_size=2, stride=2, padding=0)
        (1): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): SplAtConv2d(
        (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
        (bn0): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (fc1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (fc2): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
      )
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
  )
  (layer4): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (avd_layer): AvgPool2d(kernel_size=3, stride=2, padding=1)
      (conv2): SplAtConv2d(
        (conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
        (bn0): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (fc1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (fc2): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
      )
      (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): AvgPool2d(kernel_size=2, stride=2, padding=0)
        (1): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (2): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): SplAtConv2d(
        (conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2, bias=False)
        (bn0): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (fc1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (fc2): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
      )
      (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
  )
  (avgpool): GlobalAvgPool2d()
  (fc): Linear(in_features=2048, out_features=1000, bias=True)
)

 

就是这么简单,替换掉你的ResNet吧! 如果喜欢就给博主点个赞吧。。。

 

相关: https://www.cnblogs.com/xiximayou/p/12728644.html

          机器之心

你可能感兴趣的:(ResNeSt,pytorch)