说白了,分库分表是两回事儿,大家可别搞混了,可能是光分库不分表,也可能是光分表不分库,都有可能。
我先给大家抛出来一个场景。
假如我们现在是一个小创业公司(或者是一个 BAT 公司刚兴起的一个新部门),现在注册用户就 20 万,每天活跃用户就 1 万,每天单表数据量就 1000,然后高峰期每秒钟并发请求最多就 10。天,就这种系统,随便找一个有几年工作经验的,然后带几个刚培训出来的,随便干干都可以。
结果没想到我们运气居然这么好,碰上个 CEO 带着我们走上了康庄大道,业务发展迅猛,过了几个月,注册用户数达到了 2000 万!每天活跃用户数 100 万!每天单表数据量 10 万条!高峰期每秒最大请求达到 1000!同时公司还顺带着融资了两轮,进账了几个亿人民币啊!公司估值达到了惊人的几亿美金!这是小独角兽的节奏!
好吧,没事,现在大家感觉压力已经有点大了,为啥呢?因为每天多 10 万条数据,一个月就多 300 万条数据,现在咱们单表已经几百万数据了,马上就破千万了。但是勉强还能撑着。高峰期请求现在是 1000,咱们线上部署了几台机器,负载均衡搞了一下,数据库撑 1000QPS 也还凑合。但是大家现在开始感觉有点担心了,接下来咋整呢…
再接下来几个月,我的天,CEO 太牛逼了,公司用户数已经达到 1 亿,公司继续融资几十亿人民币啊!公司估值达到了惊人的几十亿美金,成为了国内今年最牛逼的明星创业公司!天,我们太幸运了。
但是我们同时也是不幸的,因为此时每天活跃用户数上千万,每天单表新增数据多达 50 万,目前一个表总数据量都已经达到了两三千万了!扛不住啊!数据库磁盘容量不断消耗掉!高峰期并发达到惊人的 5000~8000
!别开玩笑了,哥。我跟你保证,你的系统支撑不到现在,已经挂掉了!
好吧,所以你看到这里差不多就理解分库分表是怎么回事儿了,实际上这是跟着你的公司业务发展走的,你公司业务发展越好,用户就越多,数据量越大,请求量越大,那你单个数据库一定扛不住。
比如你单表都几千万数据了,你确定你能扛住么?绝对不行,单表数据量太大,会极大影响你的 sql 执行的性能,到了后面你的 sql 可能就跑的很慢了。一般来说,就以我的经验来看,单表到几百万的时候,性能就会相对差一些了,你就得分表了。
分表是啥意思?就是把一个表的数据放到多个表中,然后查询的时候你就查一个表。比如按照用户 id 来分表,将一个用户的数据就放在一个表中。然后操作的时候你对一个用户就操作那个表就好了。这样可以控制每个表的数据量在可控的范围内,比如每个表就固定在 200 万以内。
分库是啥意思?就是你一个库一般我们经验而言,最多支撑到并发 2000,一定要扩容了,而且一个健康的单库并发值你最好保持在每秒 1000 左右,不要太大。那么你可以将一个库的数据拆分到多个库中,访问的时候就访问一个库好了。
这就是所谓的分库分表,为啥要分库分表?你明白了吧。
# | 分库分表前 | 分库分表后 |
---|---|---|
并发支撑情况 | MySQL 单机部署,扛不住高并发 | MySQL从单机到多机,能承受的并发增加了多倍 |
磁盘使用情况 | MySQL 单机磁盘容量几乎撑满 | 拆分为多个库,数据库服务器磁盘使用率大大降低 |
SQL 执行性能 | 单表数据量太大,SQL 越跑越慢 | 单表数据量减少,SQL 执行效率明显提升 |
这个其实就是看看你了解哪些分库分表的中间件,各个中间件的优缺点是啥?然后你用过哪些分库分表的中间件。
比较常见的包括:
阿里 b2b 团队开发和开源的,属于 proxy 层方案。早些年还可以用,但是最近几年都没更新了,基本没啥人用,差不多算是被抛弃的状态吧。而且不支持读写分离、存储过程、跨库 join 和分页等操作。
淘宝团队开发的,属于 client 层方案。支持基本的 crud 语法和读写分离,但不支持 join、多表查询等语法。目前使用的也不多,因为还依赖淘宝的 diamond 配置管理系统。
360 开源的,属于 proxy 层方案,以前是有一些公司在用的,但是确实有一个很大的问题就是社区最新的维护都在 5 年前了。所以,现在用的公司基本也很少了。
当当开源的,属于 client 层方案。确实之前用的还比较多一些,因为 SQL 语法支持也比较多,没有太多限制,而且目前推出到了 2.0 版本,支持分库分表、读写分离、分布式 id 生成、柔性事务(最大努力送达型事务、TCC 事务)。而且确实之前使用的公司会比较多一些(这个在官网有登记使用的公司,可以看到从 2017 年一直到现在,是有不少公司在用的),目前社区也还一直在开发和维护,还算是比较活跃,个人认为算是一个现在也可以选择的方案。
基于 cobar 改造的,属于 proxy 层方案,支持的功能非常完善,而且目前应该是非常火的而且不断流行的数据库中间件,社区很活跃,也有一些公司开始在用了。但是确实相比于 sharding jdbc 来说,年轻一些,经历的锤炼少一些。
综上,现在其实建议考量的,就是 sharding-jdbc 和 mycat,这两个都可以去考虑使用。
sharding-jdbc 这种 client 层方案的优点在于不用部署,运维成本低,不需要代理层的二次转发请求,性能很高,但是如果遇到升级啥的需要各个系统都重新升级版本再发布,各个系统都需要耦合 sharding-jdbc 的依赖;
mycat 这种 proxy 层方案的缺点在于需要部署,自己运维一套中间件,运维成本高,但是好处在于对于各个项目是透明的,如果遇到升级之类的都是自己中间件那里搞就行了。
通常来说,这两个方案其实都可以选用,但是我个人建议中小型公司选用 sharding-jdbc,client 层方案轻便,而且维护成本低,不需要额外增派人手,而且中小型公司系统复杂度会低一些,项目也没那么多;但是中大型公司最好还是选用 mycat 这类 proxy 层方案,因为可能大公司系统和项目非常多,团队很大,人员充足,那么最好是专门弄个人来研究和维护 mycat,然后大量项目直接透明使用即可。
水平拆分的意思,就是把一个表的数据给弄到多个库的多个表里去,但是每个库的表结构都一样,只不过每个库表放的数据是不同的,所有库表的数据加起来就是全部数据。水平拆分的意义,就是将数据均匀放更多的库里,然后用多个库来抗更高的并发,还有就是用多个库的存储容量来进行扩容。
垂直拆分的意思,就是把一个有很多字段的表给拆分成多个表,或者是多个库上去。每个库表的结构都不一样,每个库表都包含部分字段。一般来说,会将较少的访问频率很高的字段放到一个表里去,然后将较多的访问频率很低的字段放到另外一个表里去。因为数据库是有缓存的,你访问频率高的行字段越少,就可以在缓存里缓存更多的行,性能就越好。这个一般在表层面做的较多一些。
这个其实挺常见的,不一定我说,大家很多同学可能自己都做过,把一个大表拆开,订单表、订单支付表、订单商品表。
还有表层面的拆分,就是分表,将一个表变成 N 个表,就是让每个表的数据量控制在一定范围内,保证 SQL 的性能。否则单表数据量越大,SQL 性能就越差。一般是 200 万行左右,不要太多,但是也得看具体你怎么操作,也可能是 500 万,或者是 100 万。你的SQL越复杂,就最好让单表行数越少。
好了,无论分库还是分表,上面说的那些数据库中间件都是可以支持的。就是基本上那些中间件可以做到你分库分表之后,中间件可以根据你指定的某个字段值,比如说 userid,自动路由到对应的库上去,然后再自动路由到对应的表里去。
你就得考虑一下,你的项目里该如何分库分表?一般来说,垂直拆分,你可以在表层面来做,对一些字段特别多的表做一下拆分;水平拆分,你可以说是并发承载不了,或者是数据量太大,容量承载不了,你给拆了,按什么字段来拆,你自己想好;分表,你考虑一下,你如果哪怕是拆到每个库里去,并发和容量都ok了,但是每个库的表还是太大了,那么你就分表,将这个表分开,保证每个表的数据量并不是很大。
而且这儿还有两种分库分表的方式:
range 来分,好处在于说,扩容的时候很简单,因为你只要预备好,给每个月都准备一个库就可以了,到了一个新的月份的时候,自然而然,就会写新的库了;缺点,但是大部分的请求,都是访问最新的数据。实际生产用 range,要看场景。
hash 分发,好处在于说,可以平均分配每个库的数据量和请求压力;坏处在于说扩容起来比较麻烦,会有一个数据迁移的过程,之前的数据需要重新计算 hash 值重新分配到不同的库或表。
这个其实从 low 到高大上有好几种方案,我们都玩儿过,我都给你说一下。
我先给你说一个最 low 的方案,就是很简单,大家伙儿凌晨 12 点开始运维,网站或者 app 挂个公告,说 0 点到早上 6 点进行运维,无法访问。
接着到 0 点停机,系统停掉,没有流量写入了,此时老的单库单表数据库静止了。然后你之前得写好一个导数的一次性工具,此时直接跑起来,然后将单库单表的数据哗哗哗读出来,写到分库分表里面去。
导数完了之后,就 ok 了,修改系统的数据库连接配置啥的,包括可能代码和 SQL 也许有修改,那你就用最新的代码,然后直接启动连到新的分库分表上去。
验证一下,ok了,完美,大家伸个懒腰,看看看凌晨 4 点钟的北京夜景,打个滴滴回家吧。
但是这个方案比较 low,谁都能干,我们来看看高大上一点的方案。
这个是我们常用的一种迁移方案,比较靠谱一些,不用停机,不用看北京凌晨 4 点的风景。
简单来说,就是在线上系统里面,之前所有写库的地方,增删改操作,除了对老库增删改,都加上对新库的增删改,这就是所谓的双写,同时写俩库,老库和新库。
然后系统部署之后,新库数据差太远,用之前说的导数工具,跑起来读老库数据写新库,写的时候要根据 gmt_modified 这类字段判断这条数据最后修改的时间,除非是读出来的数据在新库里没有,或者是比新库的数据新才会写。简单来说,就是不允许用老数据覆盖新数据。
导完一轮之后,有可能数据还是存在不一致,那么就程序自动做一轮校验,比对新老库每个表的每条数据,接着如果有不一样的,就针对那些不一样的,从老库读数据再次写。反复循环,直到两个库每个表的数据都完全一致为止。
接着当数据完全一致了,就 ok 了,基于仅仅使用分库分表的最新代码,重新部署一次,不就仅仅基于分库分表在操作了么,还没有几个小时的停机时间,很稳。所以现在基本玩儿数据迁移之类的,都是这么干的。
对于分库分表来说,主要是面对以下问题:
这个是你必须面对的一个事儿,就是你已经弄好分库分表方案了,然后一堆库和表都建好了,基于分库分表中间件的代码开发啥的都好了,测试都 ok 了,数据能均匀分布到各个库和各个表里去,而且接着你还通过双写的方案咔嚓一下上了系统,已经直接基于分库分表方案在搞了。
那么现在问题来了,你现在这些库和表又支撑不住了,要继续扩容咋办?这个可能就是说你的每个库的容量又快满了,或者是你的表数据量又太大了,也可能是你每个库的写并发太高了,你得继续扩容。
这都是玩儿分库分表线上必须经历的事儿。
这个方案就跟停机迁移一样,步骤几乎一致,唯一的一点就是那个导数的工具,是把现有库表的数据抽出来慢慢倒入到新的库和表里去。但是最好别这么玩儿,有点不太靠谱,因为既然分库分表就说明数据量实在是太大了,可能多达几亿条,甚至几十亿,你这么玩儿,可能会出问题。
从单库单表迁移到分库分表的时候,数据量并不是很大,单表最大也就两三千万。那么你写个工具,多弄几台机器并行跑,1小时数据就导完了。这没有问题。
如果 3 个库 + 12 个表,跑了一段时间了,数据量都 1~2 亿了。光是导 2 亿数据,都要导个几个小时,6 点,刚刚导完数据,还要搞后续的修改配置,重启系统,测试验证,10 点才可以搞完。所以不能这么搞。
一开始上来就是 32 个库,每个库 32 个表,那么总共是 1024 张表。
我可以告诉各位同学,这个分法,第一,基本上国内的互联网肯定都是够用了,第二,无论是并发支撑还是数据量支撑都没问题。
每个库正常承载的写入并发量是 1000,那么 32 个库就可以承载32 * 1000 = 32000 的写并发,如果每个库承载 1500 的写并发,32 * 1500 = 48000 的写并发,接近 5万/s 的写入并发,前面再加一个MQ,削峰,每秒写入 MQ 8 万条数据,每秒消费 5 万条数据。
有些除非是国内排名非常靠前的这些公司,他们的最核心的系统的数据库,可能会出现几百台数据库的这么一个规模,128个库,256个库,512个库。
1024 张表,假设每个表放 500 万数据,在 MySQL 里可以放 50 亿条数据。
每秒的 5 万写并发,总共 50 亿条数据,对于国内大部分的互联网公司来说,其实一般来说都够了。
谈分库分表的扩容,第一次分库分表,就一次性给他分个够,32 个库,1024 张表,可能对大部分的中小型互联网公司来说,已经可以支撑好几年了。
一个实践是利用 32 * 32
来分库分表,即分为 32 个库,每个库里一个表分为 32 张表。一共就是 1024 张表。根据某个 id 先根据 32 取模路由到库,再根据 32 取模路由到库里的表。
orderId | id % 32 (库) | id / 32 % 32 (表) |
---|---|---|
259 | 3 | 8 |
1189 | 5 | 5 |
352 | 0 | 11 |
4593 | 17 | 15 |
刚开始的时候,这个库可能就是逻辑库,建在一个数据库上的,就是一个mysql服务器可能建了 n 个库,比如 32 个库。后面如果要拆分,就是不断在库和 mysql 服务器之间做迁移就可以了。然后系统配合改一下配置即可。
比如说最多可以扩展到32个数据库服务器,每个数据库服务器是一个库。如果还是不够?最多可以扩展到 1024 个数据库服务器,每个数据库服务器上面一个库一个表。因为最多是1024个表。
这么搞,是不用自己写代码做数据迁移的,都交给 dba 来搞好了,但是 dba 确实是需要做一些库表迁移的工作,但是总比你自己写代码,然后抽数据导数据来的效率高得多吧。
哪怕是要减少库的数量,也很简单,其实说白了就是按倍数缩容就可以了,然后修改一下路由规则。
这里对步骤做一个总结:
其实这是分库分表之后你必然要面对的一个问题,就是 id 咋生成?因为要是分成多个表之后,每个表都是从 1 开始累加,那肯定不对啊,需要一个全局唯一的 id 来支持。所以这都是你实际生产环境中必须考虑的问题。
这个就是说你的系统里每次得到一个 id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个 id。拿到这个 id 之后再往对应的分库分表里去写入。
这个方案的好处就是方便简单,谁都会用;缺点就是单库生成自增 id,要是高并发的话,就会有瓶颈的;如果你硬是要改进一下,那么就专门开一个服务出来,这个服务每次就拿到当前 id 最大值,然后自己递增几个 id,一次性返回一批 id,然后再把当前最大 id 值修改成递增几个 id 之后的一个值;但是无论如何都是基于单个数据库。
适合的场景:你分库分表就俩原因,要不就是单库并发太高,要不就是单库数据量太大;除非是你并发不高,但是数据量太大导致的分库分表扩容,你可以用这个方案,因为可能每秒最高并发最多就几百,那么就走单独的一个库和表生成自增主键即可。
可以通过设置数据库 sequence 或者表的自增字段步长来进行水平伸缩。
比如说,现在有 8 个服务节点,每个服务节点使用一个 sequence 功能来产生 ID,每个 sequence 的起始 ID 不同,并且依次递增,步长都是 8。
适合的场景:在用户防止产生的 ID 重复时,这种方案实现起来比较简单,也能达到性能目标。但是服务节点固定,步长也固定,将来如果还要增加服务节点,就不好搞了。
好处就是本地生成,不要基于数据库来了;不好之处就是,UUID 太长了、占用空间大,作为主键性能太差了;更重要的是,UUID 不具有有序性,会导致 B+ 树索引在写的时候有过多的随机写操作(连续的 ID 可以产生部分顺序写),还有,由于在写的时候不能产生有顺序的 append 操作,而需要进行 insert 操作,将会读取整个 B+ 树节点到内存,在插入这条记录后会将整个节点写回磁盘,这种操作在记录占用空间比较大的情况下,性能下降明显。
适合的场景:如果你是要随机生成个什么文件名、编号之类的,你可以用 UUID,但是作为主键是不能用 UUID 的。
UUID.randomUUID().toString().replace(“-”, “”) -> sfsdf23423rr234sfdaf
这个就是获取当前时间即可,但是问题是,并发很高的时候,比如一秒并发几千,会有重复的情况,这个是肯定不合适的。基本就不用考虑了。
适合的场景:一般如果用这个方案,是将当前时间跟很多其他的业务字段拼接起来,作为一个 id,如果业务上你觉得可以接受,那么也是可以的。你可以将别的业务字段值跟当前时间拼接起来,组成一个全局唯一的编号。
snowflake 算法是 twitter 开源的分布式 id 生成算法,采用 Scala 语言实现,是把一个 64 位的 long 型的 id,1 个 bit 是不用的,用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 id,12 bit 作为序列号。
2^41 - 1
,也就是可以标识 2^41 - 1
个毫秒值,换算成年就是表示69年的时间。2^5
个机房(32个机房),每个机房里可以代表 2^5
个机器(32台机器)。2^12 - 1 = 4096
,也就是说可以用这个 12 bit 代表的数字来区分同一个毫秒内的 4096 个不同的 id。0 | 0001100 10100010 10111110 10001001 01011100 00 | 10001 | 1 1001 | 0000 00000000
public class IdWorker {
private long workerId;
private long datacenterId;
private long sequence;
public IdWorker(long workerId, long datacenterId, long sequence) {
// sanity check for workerId
// 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(
String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(
String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
System.out.printf(
"worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);
this.workerId = workerId;
this.datacenterId = datacenterId;
this.sequence = sequence;
}
private long twepoch = 1288834974657L;
private long workerIdBits = 5L;
private long datacenterIdBits = 5L;
// 这个是二进制运算,就是 5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
private long maxWorkerId = -1L ^ (-1L << workerIdBits);
// 这个是一个意思,就是 5 bit最多只能有31个数字,机房id最多只能是32以内
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
private long sequenceBits = 12L;
private long workerIdShift = sequenceBits;
private long datacenterIdShift = sequenceBits + workerIdBits;
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
private long sequenceMask = -1L ^ (-1L << sequenceBits);
private long lastTimestamp = -1L;
public long getWorkerId() {
return workerId;
}
public long getDatacenterId() {
return datacenterId;
}
public long getTimestamp() {
return System.currentTimeMillis();
}
public synchronized long nextId() {
// 这儿就是获取当前时间戳,单位是毫秒
long timestamp = timeGen();
if (timestamp < lastTimestamp) {
System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new RuntimeException(String.format(
"Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
if (lastTimestamp == timestamp) {
// 这个意思是说一个毫秒内最多只能有4096个数字
// 无论你传递多少进来,这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0;
}
// 这儿记录一下最近一次生成id的时间戳,单位是毫秒
lastTimestamp = timestamp;
// 这儿就是将时间戳左移,放到 41 bit那儿;
// 将机房 id左移放到 5 bit那儿;
// 将机器id左移放到5 bit那儿;将序号放最后12 bit;
// 最后拼接起来成一个 64 bit的二进制数字,转换成 10 进制就是个 long 型
return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift)
| (workerId << workerIdShift) | sequence;
}
private long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
private long timeGen() {
return System.currentTimeMillis();
}
// ---------------测试---------------
public static void main(String[] args) {
IdWorker worker = new IdWorker(1, 1, 1);
for (int i = 0; i < 30; i++) {
System.out.println(worker.nextId());
}
}
}
怎么说呢,大概这个意思吧,就是说 41 bit 是当前毫秒单位的一个时间戳,就这意思;然后 5 bit 是你传递进来的一个机房 id(但是最大只能是 32 以内),另外 5 bit 是你传递进来的机器 id(但是最大只能是 32 以内),剩下的那个 12 bit序列号,就是如果跟你上次生成 id 的时间还在一个毫秒内,那么会把顺序给你累加,最多在 4096 个序号以内。
所以你自己利用这个工具类,自己搞一个服务,然后对每个机房的每个机器都初始化这么一个东西,刚开始这个机房的这个机器的序号就是 0。然后每次接收到一个请求,说这个机房的这个机器要生成一个 id,你就找到对应的 Worker 生成。
利用这个 snowflake 算法,你可以开发自己公司的服务,甚至对于机房 id 和机器 id,反正给你预留了 5 bit + 5 bit,你换成别的有业务含义的东西也可以的。
这个 snowflake 算法相对来说还是比较靠谱的,所以你要真是搞分布式 id 生成,如果是高并发啥的,那么用这个应该性能比较好,一般每秒几万并发的场景,也足够你用了。
关注我!这里只有干货!
本文原创地址:https://jsbintask.cn/2019/02/17/interview/interview-db-shard/,转载请注明出处。