设置点击间隔为0时的效果图
先说下思想,用ps找出游戏区域的像素坐标,以及长宽,小方块的长宽等等信息,然后opencv切片,用vector储存每个切出来的小方块,比较每个小方块相似度,之后将其化为二维数组进行连接处理
下面讲解一下代码:
屏幕截图代码:
void Screen()
{
HDC hScreen = CreateDC("DISPLAY", NULL, NULL, NULL);
HDC hCompDC = CreateCompatibleDC(hScreen);
int nWidth = GetSystemMetrics(SM_CXSCREEN);
int nHeight = GetSystemMetrics(SM_CYSCREEN);
hBmp = CreateCompatibleBitmap(hScreen, nWidth, nHeight);
hOld = (HBITMAP)SelectObject(hCompDC, hBmp);
BitBlt(hCompDC, 0, 0, nWidth, nHeight, hScreen, 0, 0, SRCCOPY);
SelectObject(hCompDC, hOld);
DeleteDC(hScreen);
DeleteDC(hCompDC);
}
BOOL HBitmapToMat(HBITMAP& _hBmp, Mat& _mat)
{
BITMAP bmp;
GetObject(_hBmp, sizeof(BITMAP), &bmp);
int nChannels = bmp.bmBitsPixel == 1 ? 1 : bmp.bmBitsPixel / 8;
int depth = bmp.bmBitsPixel == 1 ? IPL_DEPTH_1U : IPL_DEPTH_8U;
Mat v_mat;
v_mat.create(cvSize(bmp.bmWidth, bmp.bmHeight), CV_MAKETYPE(CV_8U, nChannels));
GetBitmapBits(_hBmp, bmp.bmHeight*bmp.bmWidth*nChannels, v_mat.data);
_mat = v_mat;
return TRUE;
}
图片处理代码:
因为处理的游戏是QQ的连连看,最多有11*19个格子,初始化一下vector,从左上角开始一个一个切,边切边存边比较,然后再找出最多的块,即为空白块
void picture_process(Mat src)
{
//用vector储存每个小方块
vector> vec;
vec.resize(11);
for (int i = 0; i < 11; i++)
{
vec[i].resize(19);
}
memset(blank, 0, sizeof blank);
vector img;
img.clear();
int x_pos = left_x, y_pos = left_y;
for (int i = 0; i < 11; i++)
{
for (int j = 0; j < 19; j++)
{
Mat pic = src(Rect(x_pos, y_pos, block_x, block_y));
vec[i][j] = pic(Rect(3, 3, block_x - 6, block_y - 6));
x_pos += block_x;
if (img.empty())
{
img.push_back(vec[i][j]);
picturemap[i][j] = 1;
blank[0]++;
}
else
{
int flag = 0;
for (int k = 0; k < img.size(); k++)
{
if (imgcompare(img[k], vec[i][j]) > 0.99)
{
picturemap[i][j] = k + 1;
flag = 1;
blank[k]++;
break;
}
}
if (flag == 0)
{
img.push_back(vec[i][j]);
picturemap[i][j] = img.size();
blank[img.size() - 1]++;
}
}
}
x_pos = left_x;
y_pos += block_y;
}
int pos = 0, num = 0;
for (int i = 0; i < img.size(); i++)
{
if (blank[i] > num)
{
num = blank[i];
pos = i + 1;
}
}
for (int i = 0; i < 11; i++)
{
for (int j = 0; j < 19; j++)
{
if (picturemap[i][j] == pos)
picturemap[i][j] = 0;
}
}
}
图片比较代码:
//直方图比较,结果为0到1的一个数,越大越准确
double imgcompare(Mat img1, Mat img2)
{
Mat hsv_img1, hsv_img2;
cvtColor(img1, hsv_img1, CV_BGR2HSV);
cvtColor(img2, hsv_img2, CV_BGR2HSV);
int h_bins = 50; int s_bins = 60;
int histSize[] = { h_bins, s_bins };
float h_ranges[] = { 0, 256 };
float s_ranges[] = { 0, 180 };
const float* ranges[] = { h_ranges, s_ranges };
int channels[] = { 0, 1 };
MatND hist_test1;
MatND hist_test2;
calcHist(&hsv_img1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false);
normalize(hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat());
calcHist(&hsv_img2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false);
normalize(hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat());
double ans = compareHist(hist_test1, hist_test2, 0);
return ans;
}
消除的代码:match是用来找到两个相同的方块,然后用bfs搜索两个块是不是能够连通。
BFS即为广度优先搜索,在这里讲解一下思想:在一个二维矩阵中,从一个点出发,向四周的格子搜寻,如果不为目标就停止,是空白就继续往下搜索,直到找到目标;如果全部能走的都走了还找不到就是不能连通了。这里用searchmap记录一下已经走过的格子,将其标记为1,防止再走回来形成死循环。如果找到目标后,ifok设置为true,其他还在找的格子看见这条消息全部停止寻找,然后数组里面消除两个块,在传给鼠标消息让其消除游戏中的块。
如果不懂BFS的可以看看其他博客,资料挺多的
void match()
{
for (int i = 0; i < 11; i++)
{
for (int j = 0; j < 19; j++)
{
if (picturemap[i][j] == 0)
continue;
for (int m = i; m < 11; m++)
{
for (int n = 0; n < 19; n++)
{
if (picturemap[m][n] == 0)
continue;
if (m == i && n == j)
continue;
if (picturemap[i][j] == picturemap[m][n])
{
memset(searchmap, 0, sizeof searchmap);
searchmap[i][j] = 1;
bfsflag = 0;
ifok = false;
//用广度优先搜索检测两个相同的块能不能连通,能就true不能false
bfs(i, j, m, n, searchmap, 0, 0);
if (ifok)
{
//鼠标操作
::SetCursorPos((left_x + j * block_x) + 10, (left_y + i * block_y) + 10);
mouse_event(MOUSEEVENTF_LEFTDOWN | MOUSEEVENTF_LEFTUP, 0, 0, 0, 0);
//设置点击时间间隔为0到1秒的一个随机数(去掉即为瞬间连接)
Sleep(rand() % 1000);
::SetCursorPos((left_x + n * block_x) + 10, (left_y + m * block_y) + 10);
mouse_event(MOUSEEVENTF_LEFTDOWN | MOUSEEVENTF_LEFTUP, 0, 0, 0, 0);
picturemap[i][j] = 0;
picturemap[m][n] = 0;
}
}
}
}
}
}
}
void bfs(int i, int j, int m, int n, int searchmap[20][20], int dir, int temp)
{
if (bfsflag == 1)
return;
if (temp > 2)
return;
if ((i == m) && (j == n))
{
bfsflag = 1;
ifok = true;
return;
}
for (int ii = 0; ii < 4; ii++)
{
int xx = i + dirary[ii][0];
int yy = j + dirary[ii][1];
if (xx < 0 || xx>10 || yy < 0 || yy >18 || searchmap[xx][yy] == 1)
continue;
searchmap[xx][yy] = 1;
if ((picturemap[xx][yy] == 0) || (picturemap[xx][yy] == picturemap[m][n]))
{
if (dir == 0)
{
bfs(xx, yy, m, n, searchmap, ii + 1, temp);
}
else
{
if (ii + 1 != dir)
bfs(xx, yy, m, n, searchmap, ii + 1, temp + 1);
else
bfs(xx, yy, m, n, searchmap, ii + 1, temp);
}
searchmap[xx][yy] = 0;
}
}
return;
}
全部代码及注释:
//隐藏程序运行时的黑框,防止截屏干扰
#ifdef _MSC_VER
#pragma comment( linker, "/subsystem:\"windows\" /entry:\"mainCRTStartup\"" )
#endif
#include
#include
#include
#include
#include
#include
#include
//游戏配置信息
//图片左上角坐标
#define left_x 13
#define left_y 180
//图片长宽
#define pic_w 590
#define pic_h 386
//每个小方块长宽
#define block_x 31
#define block_y 35
using namespace cv;
using namespace std;
//截取屏幕图以及将其转换为Mat类型
void Screen();
BOOL HBitmapToMat(HBITMAP& _hBmp, Mat& _mat);
//图片切片
void picture_process(Mat src);
//图片比较
double imgcompare(Mat img1, Mat img2);
//图片匹配,用到了广度优先搜索
void match();
void bfs(int i, int j, int m, int n, int searchmap[20][20], int dir, int temp);
HBITMAP hBmp;
HBITMAP hOld;
//将图片转化为数字矩阵,方便处理
int picturemap[20][20];
//统计每种图片有多少个(最多的即为空白部分)
int blank[300];
//搜索的标记及其方向,不懂的可以查一查BFS(广度优先搜索)
int bfsflag = 0;
int dirary[4][2] = { 1,0,-1,0,0,1,0,-1 };
int searchmap[20][20];
bool ifok = false;
int main()
{
//因为我这里切片处理不太好,小方块比对不一定完全匹配,所以就将这个过程设置了五次
//欢迎大佬们来优化
int times = 5;
while (times--)
{
//找到游戏窗口,将游戏放在左上角方便定位,然后截图
HWND hq = FindWindow(NULL, "QQ游戏 - 连连看角色版");
RECT rect;
GetWindowRect(hq, &rect);
int w = rect.right - rect.left, h = rect.bottom - rect.top;
MoveWindow(hq, 0, 0, w, h, false);
hq = FindWindow(NULL, "QQ游戏 - 连连看角色版");
GetWindowRect(hq, &rect);
Mat src;
Screen();
HBitmapToMat(hBmp, src);
DeleteObject(hBmp);
Mat imgROI = src(Rect(left_x, left_y, pic_w, pic_h));
picture_process(src);
//进行500次匹配,防止出错
int temp = 500;
while (temp--)
{
match();
}
Sleep(3000);
int cnt = 0;
//如果这时检测到还有出了空白之外的图片,就用道具重置,继续完成上面步骤
for (int i = 0; i < 300; i++)
{
if (blank[i] != 0)
{
cnt++;
}
}
if (cnt == 1)
break;
::SetCursorPos(653, 199);
mouse_event(MOUSEEVENTF_LEFTDOWN | MOUSEEVENTF_LEFTUP, 0, 0, 0, 0);
Sleep(1000);
}
return 0;
}
void Screen()
{
HDC hScreen = CreateDC("DISPLAY", NULL, NULL, NULL);
HDC hCompDC = CreateCompatibleDC(hScreen);
int nWidth = GetSystemMetrics(SM_CXSCREEN);
int nHeight = GetSystemMetrics(SM_CYSCREEN);
hBmp = CreateCompatibleBitmap(hScreen, nWidth, nHeight);
hOld = (HBITMAP)SelectObject(hCompDC, hBmp);
BitBlt(hCompDC, 0, 0, nWidth, nHeight, hScreen, 0, 0, SRCCOPY);
SelectObject(hCompDC, hOld);
DeleteDC(hScreen);
DeleteDC(hCompDC);
}
BOOL HBitmapToMat(HBITMAP& _hBmp, Mat& _mat)
{
BITMAP bmp;
GetObject(_hBmp, sizeof(BITMAP), &bmp);
int nChannels = bmp.bmBitsPixel == 1 ? 1 : bmp.bmBitsPixel / 8;
int depth = bmp.bmBitsPixel == 1 ? IPL_DEPTH_1U : IPL_DEPTH_8U;
Mat v_mat;
v_mat.create(cvSize(bmp.bmWidth, bmp.bmHeight), CV_MAKETYPE(CV_8U, nChannels));
GetBitmapBits(_hBmp, bmp.bmHeight*bmp.bmWidth*nChannels, v_mat.data);
_mat = v_mat;
return TRUE;
}
void picture_process(Mat src)
{
//用vector储存每个小方块
vector> vec;
vec.resize(11);
for (int i = 0; i < 11; i++)
{
vec[i].resize(19);
}
memset(blank, 0, sizeof blank);
vector img;
img.clear();
int x_pos = left_x, y_pos = left_y;
for (int i = 0; i < 11; i++)
{
for (int j = 0; j < 19; j++)
{
Mat pic = src(Rect(x_pos, y_pos, block_x, block_y));
vec[i][j] = pic(Rect(3, 3, block_x - 6, block_y - 6));
x_pos += block_x;
if (img.empty())
{
img.push_back(vec[i][j]);
picturemap[i][j] = 1;
blank[0]++;
}
else
{
int flag = 0;
for (int k = 0; k < img.size(); k++)
{
if (imgcompare(img[k], vec[i][j]) > 0.99)
{
picturemap[i][j] = k + 1;
flag = 1;
blank[k]++;
break;
}
}
if (flag == 0)
{
img.push_back(vec[i][j]);
picturemap[i][j] = img.size();
blank[img.size() - 1]++;
}
}
}
x_pos = left_x;
y_pos += block_y;
}
int pos = 0, num = 0;
for (int i = 0; i < img.size(); i++)
{
if (blank[i] > num)
{
num = blank[i];
pos = i + 1;
}
}
for (int i = 0; i < 11; i++)
{
for (int j = 0; j < 19; j++)
{
if (picturemap[i][j] == pos)
picturemap[i][j] = 0;
}
}
}
//直方图比较,结果为0到1的一个数,越大越准确
double imgcompare(Mat img1, Mat img2)
{
Mat hsv_img1, hsv_img2;
cvtColor(img1, hsv_img1, CV_BGR2HSV);
cvtColor(img2, hsv_img2, CV_BGR2HSV);
int h_bins = 50; int s_bins = 60;
int histSize[] = { h_bins, s_bins };
float h_ranges[] = { 0, 256 };
float s_ranges[] = { 0, 180 };
const float* ranges[] = { h_ranges, s_ranges };
int channels[] = { 0, 1 };
MatND hist_test1;
MatND hist_test2;
calcHist(&hsv_img1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false);
normalize(hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat());
calcHist(&hsv_img2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false);
normalize(hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat());
double ans = compareHist(hist_test1, hist_test2, 0);
return ans;
}
void match()
{
for (int i = 0; i < 11; i++)
{
for (int j = 0; j < 19; j++)
{
if (picturemap[i][j] == 0)
continue;
for (int m = i; m < 11; m++)
{
for (int n = 0; n < 19; n++)
{
if (picturemap[m][n] == 0)
continue;
if (m == i && n == j)
continue;
if (picturemap[i][j] == picturemap[m][n])
{
memset(searchmap, 0, sizeof searchmap);
searchmap[i][j] = 1;
bfsflag = 0;
ifok = false;
//用广度优先搜索检测两个相同的块能不能连通,能就true不能false
bfs(i, j, m, n, searchmap, 0, 0);
if (ifok)
{
//鼠标操作
::SetCursorPos((left_x + j * block_x) + 10, (left_y + i * block_y) + 10);
mouse_event(MOUSEEVENTF_LEFTDOWN | MOUSEEVENTF_LEFTUP, 0, 0, 0, 0);
//设置点击时间间隔为0到1秒的一个随机数(去掉即为瞬间连接)
Sleep(rand() % 1000);
::SetCursorPos((left_x + n * block_x) + 10, (left_y + m * block_y) + 10);
mouse_event(MOUSEEVENTF_LEFTDOWN | MOUSEEVENTF_LEFTUP, 0, 0, 0, 0);
picturemap[i][j] = 0;
picturemap[m][n] = 0;
}
}
}
}
}
}
}
void bfs(int i, int j, int m, int n, int searchmap[20][20], int dir, int temp)
{
if (bfsflag == 1)
return;
if (temp > 2)
return;
if ((i == m) && (j == n))
{
bfsflag = 1;
ifok = true;
return;
}
for (int ii = 0; ii < 4; ii++)
{
int xx = i + dirary[ii][0];
int yy = j + dirary[ii][1];
if (xx < 0 || xx>10 || yy < 0 || yy >18 || searchmap[xx][yy] == 1)
continue;
searchmap[xx][yy] = 1;
if ((picturemap[xx][yy] == 0) || (picturemap[xx][yy] == picturemap[m][n]))
{
if (dir == 0)
{
bfs(xx, yy, m, n, searchmap, ii + 1, temp);
}
else
{
if (ii + 1 != dir)
bfs(xx, yy, m, n, searchmap, ii + 1, temp + 1);
else
bfs(xx, yy, m, n, searchmap, ii + 1, temp);
}
searchmap[xx][yy] = 0;
}
}
return;
}
我用的opencv2.4.9,版本不同的话修改关键部分就行