用opencv实现连连看外挂

用opencv实现连连看外挂_第1张图片

用opencv实现连连看外挂_第2张图片

设置点击间隔为0时的效果图

先说下思想,用ps找出游戏区域的像素坐标,以及长宽,小方块的长宽等等信息,然后opencv切片,用vector储存每个切出来的小方块,比较每个小方块相似度,之后将其化为二维数组进行连接处理

下面讲解一下代码:


屏幕截图代码:

void Screen()
{
	HDC hScreen = CreateDC("DISPLAY", NULL, NULL, NULL);
	HDC	hCompDC = CreateCompatibleDC(hScreen);
	int		nWidth = GetSystemMetrics(SM_CXSCREEN);
	int		nHeight = GetSystemMetrics(SM_CYSCREEN);
	hBmp = CreateCompatibleBitmap(hScreen, nWidth, nHeight);
	hOld = (HBITMAP)SelectObject(hCompDC, hBmp);
	BitBlt(hCompDC, 0, 0, nWidth, nHeight, hScreen, 0, 0, SRCCOPY);
	SelectObject(hCompDC, hOld);
	DeleteDC(hScreen);
	DeleteDC(hCompDC);
}
BOOL HBitmapToMat(HBITMAP& _hBmp, Mat& _mat)
{
	BITMAP bmp;
	GetObject(_hBmp, sizeof(BITMAP), &bmp);
	int nChannels = bmp.bmBitsPixel == 1 ? 1 : bmp.bmBitsPixel / 8;
	int depth = bmp.bmBitsPixel == 1 ? IPL_DEPTH_1U : IPL_DEPTH_8U;
	Mat v_mat;
	v_mat.create(cvSize(bmp.bmWidth, bmp.bmHeight), CV_MAKETYPE(CV_8U, nChannels));
	GetBitmapBits(_hBmp, bmp.bmHeight*bmp.bmWidth*nChannels, v_mat.data);
	_mat = v_mat;
	return TRUE;
}

 

 

 

图片处理代码:

因为处理的游戏是QQ的连连看,最多有11*19个格子,初始化一下vector,从左上角开始一个一个切,边切边存边比较,然后再找出最多的块,即为空白块

void picture_process(Mat src)
{
	//用vector储存每个小方块
	vector> vec;
	vec.resize(11);
	for (int i = 0; i < 11; i++)
	{
		vec[i].resize(19);
	}
	memset(blank, 0, sizeof blank);
	vector img;
	img.clear();
	int x_pos = left_x, y_pos = left_y;
	for (int i = 0; i < 11; i++)
	{
		for (int j = 0; j < 19; j++)
		{
			Mat pic = src(Rect(x_pos, y_pos, block_x, block_y));
			vec[i][j] = pic(Rect(3, 3, block_x - 6, block_y - 6));
			x_pos += block_x;
			if (img.empty())
			{
				img.push_back(vec[i][j]);
				picturemap[i][j] = 1;
				blank[0]++;
			}
			else
			{
				int flag = 0;
				for (int k = 0; k < img.size(); k++)
				{
					if (imgcompare(img[k], vec[i][j]) > 0.99)
					{
						picturemap[i][j] = k + 1;
						flag = 1;
						blank[k]++;
						break;
					}
				}
				if (flag == 0)
				{
					img.push_back(vec[i][j]);
					picturemap[i][j] = img.size();
					blank[img.size() - 1]++;
				}
			}
		}
		x_pos = left_x;
		y_pos += block_y;
	}
	int pos = 0, num = 0;
	for (int i = 0; i < img.size(); i++)
	{
		if (blank[i] > num)
		{
			num = blank[i];
			pos = i + 1;
		}
	}
	for (int i = 0; i < 11; i++)
	{
		for (int j = 0; j < 19; j++)
		{
			if (picturemap[i][j] == pos)
				picturemap[i][j] = 0;
		}
	}

}

图片比较代码:

//直方图比较,结果为0到1的一个数,越大越准确
double imgcompare(Mat img1, Mat img2)
{
	Mat hsv_img1, hsv_img2;
	cvtColor(img1, hsv_img1, CV_BGR2HSV);
	cvtColor(img2, hsv_img2, CV_BGR2HSV);

	int h_bins = 50; int s_bins = 60;
	int histSize[] = { h_bins, s_bins };

	float h_ranges[] = { 0, 256 };
	float s_ranges[] = { 0, 180 };

	const float* ranges[] = { h_ranges, s_ranges };

	int channels[] = { 0, 1 };

	MatND hist_test1;
	MatND hist_test2;

	calcHist(&hsv_img1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false);
	normalize(hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat());

	calcHist(&hsv_img2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false);
	normalize(hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat());


	double ans = compareHist(hist_test1, hist_test2, 0);
	return ans;
}

 

消除的代码:match是用来找到两个相同的方块,然后用bfs搜索两个块是不是能够连通。

BFS即为广度优先搜索,在这里讲解一下思想:在一个二维矩阵中,从一个点出发,向四周的格子搜寻,如果不为目标就停止,是空白就继续往下搜索,直到找到目标;如果全部能走的都走了还找不到就是不能连通了。这里用searchmap记录一下已经走过的格子,将其标记为1,防止再走回来形成死循环。如果找到目标后,ifok设置为true,其他还在找的格子看见这条消息全部停止寻找,然后数组里面消除两个块,在传给鼠标消息让其消除游戏中的块。

如果不懂BFS的可以看看其他博客,资料挺多的

void match()
{
	for (int i = 0; i < 11; i++)
	{
		for (int j = 0; j < 19; j++)
		{
			if (picturemap[i][j] == 0)
				continue;
			for (int m = i; m < 11; m++)
			{
				for (int n = 0; n < 19; n++)
				{
					if (picturemap[m][n] == 0)
						continue;
					if (m == i && n == j)
						continue;
					if (picturemap[i][j] == picturemap[m][n])
					{
						memset(searchmap, 0, sizeof searchmap);
						searchmap[i][j] = 1;
						bfsflag = 0;
						ifok = false;
						//用广度优先搜索检测两个相同的块能不能连通,能就true不能false
						bfs(i, j, m, n, searchmap, 0, 0);
						if (ifok)
						{
							//鼠标操作
							::SetCursorPos((left_x + j * block_x) + 10, (left_y + i * block_y) + 10);
							mouse_event(MOUSEEVENTF_LEFTDOWN | MOUSEEVENTF_LEFTUP, 0, 0, 0, 0);
							//设置点击时间间隔为0到1秒的一个随机数(去掉即为瞬间连接)
							Sleep(rand() % 1000);
							::SetCursorPos((left_x + n * block_x) + 10, (left_y + m * block_y) + 10);
							mouse_event(MOUSEEVENTF_LEFTDOWN | MOUSEEVENTF_LEFTUP, 0, 0, 0, 0);
							picturemap[i][j] = 0;
							picturemap[m][n] = 0;

						}

					}
				}
			}
		}
	}
}
void bfs(int i, int j, int m, int n, int searchmap[20][20], int dir, int temp)
{
	if (bfsflag == 1)
		return;
	if (temp > 2)
		return;
	if ((i == m) && (j == n))
	{
		bfsflag = 1;
		ifok = true;
		return;
	}
	for (int ii = 0; ii < 4; ii++)
	{
		int xx = i + dirary[ii][0];
		int yy = j + dirary[ii][1];
		if (xx < 0 || xx>10 || yy < 0 || yy >18 || searchmap[xx][yy] == 1)
			continue;
		searchmap[xx][yy] = 1;
		if ((picturemap[xx][yy] == 0) || (picturemap[xx][yy] == picturemap[m][n]))
		{
			if (dir == 0)
			{
				bfs(xx, yy, m, n, searchmap, ii + 1, temp);
			}
			else
			{
				if (ii + 1 != dir)
					bfs(xx, yy, m, n, searchmap, ii + 1, temp + 1);
				else
					bfs(xx, yy, m, n, searchmap, ii + 1, temp);
			}
			searchmap[xx][yy] = 0;
		}
	}
	return;
}

 

 

全部代码及注释:

//隐藏程序运行时的黑框,防止截屏干扰
#ifdef _MSC_VER
#pragma comment( linker, "/subsystem:\"windows\" /entry:\"mainCRTStartup\"" )
#endif          

#include 
#include 
#include 
#include 
#include
#include
#include

//游戏配置信息

//图片左上角坐标
#define left_x 13
#define left_y 180
//图片长宽
#define pic_w 590
#define pic_h 386
//每个小方块长宽
#define block_x 31
#define block_y 35


using namespace cv;
using namespace std;

//截取屏幕图以及将其转换为Mat类型
void Screen();
BOOL HBitmapToMat(HBITMAP& _hBmp, Mat& _mat);
//图片切片
void picture_process(Mat src);
//图片比较
double imgcompare(Mat img1, Mat img2);
//图片匹配,用到了广度优先搜索
void match();
void bfs(int i, int j, int m, int n, int searchmap[20][20], int dir, int temp);
HBITMAP	hBmp;
HBITMAP	hOld;

//将图片转化为数字矩阵,方便处理
int picturemap[20][20];
//统计每种图片有多少个(最多的即为空白部分)
int blank[300];
//搜索的标记及其方向,不懂的可以查一查BFS(广度优先搜索)
int bfsflag = 0;
int dirary[4][2] = { 1,0,-1,0,0,1,0,-1 };
int searchmap[20][20];
bool ifok = false;

int main()
{
	//因为我这里切片处理不太好,小方块比对不一定完全匹配,所以就将这个过程设置了五次
	//欢迎大佬们来优化
	int times = 5;
	while (times--)
	{
		//找到游戏窗口,将游戏放在左上角方便定位,然后截图
		HWND hq = FindWindow(NULL, "QQ游戏 - 连连看角色版");
		RECT rect;
		GetWindowRect(hq, &rect);
		int w = rect.right - rect.left, h = rect.bottom - rect.top;
		MoveWindow(hq, 0, 0, w, h, false);
		hq = FindWindow(NULL, "QQ游戏 - 连连看角色版");
		GetWindowRect(hq, &rect);
		Mat src;
		Screen();
		HBitmapToMat(hBmp, src);
		DeleteObject(hBmp);
		Mat imgROI = src(Rect(left_x, left_y, pic_w, pic_h));
		picture_process(src);
		//进行500次匹配,防止出错
		int temp = 500;
		while (temp--)
		{
			match();
		}
		Sleep(3000);
		int cnt = 0;
		//如果这时检测到还有出了空白之外的图片,就用道具重置,继续完成上面步骤
		for (int i = 0; i < 300; i++)
		{
			if (blank[i] != 0)
			{
				cnt++;
			}
		}
		if (cnt == 1)
			break;
		::SetCursorPos(653, 199);
		mouse_event(MOUSEEVENTF_LEFTDOWN | MOUSEEVENTF_LEFTUP, 0, 0, 0, 0);
		Sleep(1000);
	}
	return 0;
}

void Screen()
{
	HDC hScreen = CreateDC("DISPLAY", NULL, NULL, NULL);
	HDC	hCompDC = CreateCompatibleDC(hScreen);
	int		nWidth = GetSystemMetrics(SM_CXSCREEN);
	int		nHeight = GetSystemMetrics(SM_CYSCREEN);
	hBmp = CreateCompatibleBitmap(hScreen, nWidth, nHeight);
	hOld = (HBITMAP)SelectObject(hCompDC, hBmp);
	BitBlt(hCompDC, 0, 0, nWidth, nHeight, hScreen, 0, 0, SRCCOPY);
	SelectObject(hCompDC, hOld);
	DeleteDC(hScreen);
	DeleteDC(hCompDC);
}
BOOL HBitmapToMat(HBITMAP& _hBmp, Mat& _mat)
{
	BITMAP bmp;
	GetObject(_hBmp, sizeof(BITMAP), &bmp);
	int nChannels = bmp.bmBitsPixel == 1 ? 1 : bmp.bmBitsPixel / 8;
	int depth = bmp.bmBitsPixel == 1 ? IPL_DEPTH_1U : IPL_DEPTH_8U;
	Mat v_mat;
	v_mat.create(cvSize(bmp.bmWidth, bmp.bmHeight), CV_MAKETYPE(CV_8U, nChannels));
	GetBitmapBits(_hBmp, bmp.bmHeight*bmp.bmWidth*nChannels, v_mat.data);
	_mat = v_mat;
	return TRUE;
}

void picture_process(Mat src)
{
	//用vector储存每个小方块
	vector> vec;
	vec.resize(11);
	for (int i = 0; i < 11; i++)
	{
		vec[i].resize(19);
	}
	memset(blank, 0, sizeof blank);
	vector img;
	img.clear();
	int x_pos = left_x, y_pos = left_y;
	for (int i = 0; i < 11; i++)
	{
		for (int j = 0; j < 19; j++)
		{
			Mat pic = src(Rect(x_pos, y_pos, block_x, block_y));
			vec[i][j] = pic(Rect(3, 3, block_x - 6, block_y - 6));
			x_pos += block_x;
			if (img.empty())
			{
				img.push_back(vec[i][j]);
				picturemap[i][j] = 1;
				blank[0]++;
			}
			else
			{
				int flag = 0;
				for (int k = 0; k < img.size(); k++)
				{
					if (imgcompare(img[k], vec[i][j]) > 0.99)
					{
						picturemap[i][j] = k + 1;
						flag = 1;
						blank[k]++;
						break;
					}
				}
				if (flag == 0)
				{
					img.push_back(vec[i][j]);
					picturemap[i][j] = img.size();
					blank[img.size() - 1]++;
				}
			}
		}
		x_pos = left_x;
		y_pos += block_y;
	}
	int pos = 0, num = 0;
	for (int i = 0; i < img.size(); i++)
	{
		if (blank[i] > num)
		{
			num = blank[i];
			pos = i + 1;
		}
	}
	for (int i = 0; i < 11; i++)
	{
		for (int j = 0; j < 19; j++)
		{
			if (picturemap[i][j] == pos)
				picturemap[i][j] = 0;
		}
	}

}

//直方图比较,结果为0到1的一个数,越大越准确
double imgcompare(Mat img1, Mat img2)
{
	Mat hsv_img1, hsv_img2;
	cvtColor(img1, hsv_img1, CV_BGR2HSV);
	cvtColor(img2, hsv_img2, CV_BGR2HSV);

	int h_bins = 50; int s_bins = 60;
	int histSize[] = { h_bins, s_bins };

	float h_ranges[] = { 0, 256 };
	float s_ranges[] = { 0, 180 };

	const float* ranges[] = { h_ranges, s_ranges };

	int channels[] = { 0, 1 };

	MatND hist_test1;
	MatND hist_test2;

	calcHist(&hsv_img1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false);
	normalize(hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat());

	calcHist(&hsv_img2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false);
	normalize(hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat());


	double ans = compareHist(hist_test1, hist_test2, 0);
	return ans;
}

void match()
{
	for (int i = 0; i < 11; i++)
	{
		for (int j = 0; j < 19; j++)
		{
			if (picturemap[i][j] == 0)
				continue;
			for (int m = i; m < 11; m++)
			{
				for (int n = 0; n < 19; n++)
				{
					if (picturemap[m][n] == 0)
						continue;
					if (m == i && n == j)
						continue;
					if (picturemap[i][j] == picturemap[m][n])
					{
						memset(searchmap, 0, sizeof searchmap);
						searchmap[i][j] = 1;
						bfsflag = 0;
						ifok = false;
						//用广度优先搜索检测两个相同的块能不能连通,能就true不能false
						bfs(i, j, m, n, searchmap, 0, 0);
						if (ifok)
						{
							//鼠标操作
							::SetCursorPos((left_x + j * block_x) + 10, (left_y + i * block_y) + 10);
							mouse_event(MOUSEEVENTF_LEFTDOWN | MOUSEEVENTF_LEFTUP, 0, 0, 0, 0);
							//设置点击时间间隔为0到1秒的一个随机数(去掉即为瞬间连接)
							Sleep(rand() % 1000);
							::SetCursorPos((left_x + n * block_x) + 10, (left_y + m * block_y) + 10);
							mouse_event(MOUSEEVENTF_LEFTDOWN | MOUSEEVENTF_LEFTUP, 0, 0, 0, 0);
							picturemap[i][j] = 0;
							picturemap[m][n] = 0;

						}

					}
				}
			}
		}
	}
}
void bfs(int i, int j, int m, int n, int searchmap[20][20], int dir, int temp)
{
	if (bfsflag == 1)
		return;
	if (temp > 2)
		return;
	if ((i == m) && (j == n))
	{
		bfsflag = 1;
		ifok = true;
		return;
	}
	for (int ii = 0; ii < 4; ii++)
	{
		int xx = i + dirary[ii][0];
		int yy = j + dirary[ii][1];
		if (xx < 0 || xx>10 || yy < 0 || yy >18 || searchmap[xx][yy] == 1)
			continue;
		searchmap[xx][yy] = 1;
		if ((picturemap[xx][yy] == 0) || (picturemap[xx][yy] == picturemap[m][n]))
		{
			if (dir == 0)
			{
				bfs(xx, yy, m, n, searchmap, ii + 1, temp);
			}
			else
			{
				if (ii + 1 != dir)
					bfs(xx, yy, m, n, searchmap, ii + 1, temp + 1);
				else
					bfs(xx, yy, m, n, searchmap, ii + 1, temp);
			}
			searchmap[xx][yy] = 0;
		}
	}
	return;
}

 

我用的opencv2.4.9,版本不同的话修改关键部分就行

你可能感兴趣的:(opencv,外挂,C)