要使用 Kubernetes,你需要用 Kubernetes API 对象 来描述集群的 预期状态(desired state) :包括你需要运行的应用或者负载,它们使用的镜像、副本数,以及所需网络和磁盘资源等等。你可以使用命令行工具 kubectl
来调用 Kubernetes API 创建对象,通过所创建的这些对象来配置预期状态。你也可以直接调用 Kubernetes API 和集群进行交互,设置或者修改预期状态。
一旦设置了所需的目标状态,Kubernetes 控制面(control plane) 会通过 Pod 生命周期事件生成器(PLEG),促成集群的当前状态符合其预期状态。为此,Kubernetes 会自动执行各类任务,比如运行或者重启容器、调整给定应用的副本数等等。Kubernetes 控制面由一组运行在集群上的进程组成:
Kubernetes 包含若干用来表示系统状态的抽象层,包括:已部署的容器化应用和负载、与它们相关的网络和磁盘资源以及有关集群正在运行的其他操作的信息。这些抽象使用 Kubernetes API 对象来表示。有关更多详细信息,请参阅了解 Kubernetes 对象。
基本的 Kubernetes 对象包括:
Kubernetes 也包含大量的被称作 Controller 的高级抽象。控制器基于基本对象构建并提供额外的功能和方便使用的特性。具体包括:
关于 Kubernetes 控制平面的各个部分,(如 Kubernetes 主控组件和 kubelet 进程),管理着 Kubernetes 如何与你的集群进行通信。控制平面维护着系统中所有的 Kubernetes 对象的状态记录,并且通过连续的控制循环来管理这些对象的状态。在任意的给定时间点,控制面的控制环都能响应集群中的变化,并且让系统中所有对象的实际状态与你提供的预期状态相匹配。
比如, 当你通过 Kubernetes API 创建一个 Deployment 对象,你就为系统增加了一个新的目标状态。Kubernetes 控制平面记录着对象的创建,并启动必要的应用然后将它们调度至集群某个节点上来执行你的指令,以此来保持集群的实际状态和目标状态的匹配。
Kubernetes master 节点负责维护集群的目标状态。当你要与 Kubernetes 通信时,使用如 kubectl
的命令行工具,就可以直接与 Kubernetes master 节点进行通信。
“master” 是指管理集群状态的一组进程的集合。通常这些进程都跑在集群中一个单独的节点上,并且这个节点被称为 master 节点。master 节点也可以扩展副本数,来获取更好的可用性及冗余。
集群中的 node 节点(虚拟机、物理机等等)都是用来运行你的应用和云工作流的机器。Kubernetes master 节点控制所有 node 节点;你很少需要和 node 节点进行直接通信。
***个人注解:使用kubectl get pods --all-namespaces -o wide
选项 -o wide 显示详细信息可以看到相关pod 所在的node节点,实际运维中,会遇到 单个node 节点故障影响服务的状态;***
此页面是 Kubernetes 的概述。
Kubernetes 是一个可移植的、可扩展的开源平台,用于管理容器化的工作负载和服务,可促进声明式配置和自动化。Kubernetes 拥有一个庞大且快速增长的生态系统。Kubernetes 的服务、支持和工具广泛可用。
名称 Kubernetes 源于希腊语,意为 “舵手” 或 “飞行员”。Google 在 2014 年开源了 Kubernetes 项目。Kubernetes 建立在 Google 在大规模运行生产工作负载方面拥有十几年的经验的基础上,结合了社区中最好的想法和实践。
让我们回顾一下为什么 Kubernetes 如此有用。
传统部署时代: 早期,组织在物理服务器上运行应用程序。无法为物理服务器中的应用程序定义资源边界,这会导致资源分配问题。例如,如果在物理服务器上运行多个应用程序,则可能会出现一个应用程序占用大部分资源的情况,结果可能导致其他应用程序的性能下降。一种解决方案是在不同的物理服务器上运行每个应用程序,但是由于资源利用不足而无法扩展,并且组织维护许多物理服务器的成本很高。
虚拟化部署时代: 作为解决方案,引入了虚拟化功能,它允许您在单个物理服务器的 CPU 上运行多个虚拟机(VM)。虚拟化功能允许应用程序在 VM 之间隔离,并提供安全级别,因为一个应用程序的信息不能被另一应用程序自由地访问。
因为虚拟化可以轻松地添加或更新应用程序、降低硬件成本等等,所以虚拟化可以更好地利用物理服务器中的资源,并可以实现更好的可伸缩性。
每个 VM 是一台完整的计算机,在虚拟化硬件之上运行所有组件,包括其自己的操作系统。
容器部署时代: 容器类似于 VM,但是它们具有轻量级的隔离属性,可以在应用程序之间共享操作系统(OS)。因此,容器被认为是轻量级的。容器与 VM 类似,具有自己的文件系统、CPU、内存、进程空间等。由于它们与基础架构分离,因此可以跨云和 OS 分发进行移植。
容器因具有许多优势而变得流行起来。下面列出了容器的一些好处:
个人注解:这里需要理解,传统的物理机部署 , 虚拟化 vm 部署 ,容器化部署 三种部署模式下,受到各自技术特点,会有有的优缺点,进一步理解虚拟化技术和容器化技术的优势和适用场景;
容器是打包和运行应用程序的好方式。在生产环境中,您需要管理运行应用程序的容器,并确保不会停机。例如,如果一个容器发生故障,则需要启动另一个容器。如果系统处理此行为,会不会更容易?
这就是 Kubernetes 的救援方法!Kubernetes 为您提供了一个可弹性运行分布式系统的框架。Kubernetes 会满足您的扩展要求、故障转移、部署模式等。例如,Kubernetes 可以轻松管理系统的 Canary 部署。
Kubernetes 为您提供:
服务发现和负载均衡
Kubernetes 可以使用 DNS 名称或自己的 IP 地址公开容器,如果到容器的流量很大,Kubernetes 可以负载均衡并分配网络流量,从而使部署稳定。
存储编排
Kubernetes 允许您自动挂载您选择的存储系统,例如本地存储、公共云提供商等。
自动部署和回滚
您可以使用 Kubernetes 描述已部署容器的所需状态,它可以以受控的速率将实际状态更改为所需状态。例如,您可以自动化 Kubernetes 来为您的部署创建新容器,删除现有容器并将它们的所有资源用于新容器。
自动二进制打包
Kubernetes 允许您指定每个容器所需 CPU 和内存(RAM)。当容器指定了资源请求时,Kubernetes 可以做出更好的决策来管理容器的资源。
自我修复
Kubernetes 重新启动失败的容器、替换容器、杀死不响应用户定义的运行状况检查的容器,并且在准备好服务之前不将其通告给客户端。
密钥与配置管理
Kubernetes 允许您存储和管理敏感信息,例如密码、OAuth 令牌和 ssh 密钥。您可以在不重建容器镜像的情况下部署和更新密钥和应用程序配置,也无需在堆栈配置中暴露密钥。
个人注解:分布式 容器 管理平台,运维人员不用直接管理容器,依赖kubernetes 完成管理;
Kubernetes 不是传统的、包罗万象的 PaaS(平台即服务)系统。由于 Kubernetes 在容器级别而不是在硬件级别运行,因此它提供了 PaaS 产品共有的一些普遍适用的功能,例如部署、扩展、负载均衡、日志记录和监视。但是,Kubernetes 不是单一的,默认解决方案是可选和可插拔的。Kubernetes 提供了构建开发人员平台的基础,但是在重要的地方保留了用户的选择和灵活性。
Kubernetes:
Kubernetes 不限制支持的应用程序类型。Kubernetes 旨在支持极其多种多样的工作负载,包括无状态、有状态和数据处理工作负载。如果应用程序可以在容器中运行,那么它应该可以在 Kubernetes 上很好地运行。
Kubernetes 不部署源代码,也不构建您的应用程序。持续集成(CI)、交付和部署(CI/CD)工作流取决于组织的文化和偏好以及技术要求。
Kubernetes 不提供应用程序级别的服务作为内置服务,例如中间件(例如,消息中间件)、数据处理框架(例如,Spark)、数据库(例如,mysql)、缓存、集群存储系统(例如,Ceph)。这样的组件可以在 Kubernetes 上运行,并且/或者可以由运行在 Kubernetes 上的应用程序通过可移植机制(例如,开放服务代理)来访问。
Kubernetes 不指定日志记录、监视或警报解决方案。它提供了一些集成作为概念证明,并提供了收集和导出指标的机制。
Kubernetes 不提供或不要求配置语言/系统(例如 jsonnet),它提供了声明性 API,该声明性 API 可以由任意形式的声明性规范所构成。
Kubernetes 不提供也不采用任何全面的机器配置、维护、管理或自我修复系统。
此外,Kubernetes 不仅仅是一个编排系统,实际上它消除了编排的需要。编排的技术定义是执行已定义的工作流程:首先执行 A,然后执行 B,再执行 C。相比之下,Kubernetes 包含一组独立的、可组合的控制过程,这些过程连续地将当前状态驱动到所提供的所需状态。从 A 到 C 的方式无关紧要,也不需要集中控制,这使得系统更易于使用且功能更强大、健壮、弹性和可扩展性。
当部署完 Kubernetes, 即拥有了一个完整的集群。
一个 Kubernetes 集群包含 集群由一组被称作节点的机器组成。这些节点上运行 Kubernetes 所管理的容器化应用。集群具有至少一个工作节点和至少一个主节点。(***注解:master节点和node节点***)
工作节点托管作为应用程序组件的 Pod 。主节点管理集群中的工作节点和 Pod 。多个主节点用于为集群提供故障转移和高可用性。
本文档概述了交付正常运行的 Kubernetes 集群所需的各种组件。
这张图表展示了包含所有相互关联组件的 Kubernetes 集群。
控制平面的组件对集群做出全局决策(比如调度),以及检测和响应集群事件(例如,当不满足部署的 replicas
字段时,启动新的 pod)。
控制平面组件可以在集群中的任何节点上运行。然而,为了简单起见,设置脚本通常会在同一个计算机上启动所有控制平面组件,并且不会在此计算机上运行用户容器。请参阅构建高可用性集群中对于多主机 VM 的设置示例。
主节点上负责提供 Kubernetes API 服务的组件;它是 Kubernetes 控制面的前端。
kube-apiserver 在设计上考虑了水平扩缩的需要。 换言之,通过部署多个实例可以实现扩缩。 参见构造高可用集群。
systemctl status kube-apiserver.service
etcd 是兼具一致性和高可用性的键值数据库,可以作为保存 Kubernetes 所有集群数据的后台数据库。
您的 Kubernetes 集群的 etcd 数据库通常需要有个备份计划。要了解 etcd 更深层次的信息,请参考 etcd 文档。
systemctl status [email protected]
主节点上的组件,该组件监视那些新创建的未指定运行节点的 Pod,并选择节点让 Pod 在上面运行。
调度决策考虑的因素包括单个 Pod 和 Pod 集合的资源需求、硬件/软件/策略约束、亲和性和反亲和性规范、数据位置、工作负载间的干扰和最后时限。
systemctl status kube-scheduler.service
在主节点上运行控制器的组件。
从逻辑上讲,每个控制器都是一个单独的进程,但是为了降低复杂性,它们都被编译到同一个可执行文件,并在一个进程中运行。
这些控制器包括:
systemctl status kube-controller-manager.service
cloud-controller-manager 运行与基础云提供商交互的控制器。cloud-controller-manager 二进制文件是 Kubernetes 1.6 版本中引入的 alpha 功能。
cloud-controller-manager 仅运行云提供商特定的控制器循环。您必须在 kube-controller-manager 中禁用这些控制器循环,您可以通过在启动 kube-controller-manager 时将 --cloud-provider
参数设置为 external
来禁用控制器循环。
cloud-controller-manager 允许云供应商的代码和 Kubernetes 代码彼此独立地发展。在以前的版本中,核心的 Kubernetes 代码依赖于特定云提供商的代码来实现功能。在将来的版本中,云供应商专有的代码应由云供应商自己维护,并与运行 Kubernetes 的云控制器管理器相关联。
以下控制器具有云提供商依赖性:
节点组件在每个节点上运行,维护运行的 Pod 并提供 Kubernetes 运行环境。
kubectl get nodes --all-namespaces
一个在集群中每个节点上运行的代理。它保证容器都运行在 Pod 中。
kubelet 接收一组通过各类机制提供给它的 PodSpecs,确保这些 PodSpecs 中描述的容器处于运行状态且健康。kubelet 不会管理不是由 Kubernetes 创建的容器。
systemctl status kubelet.service
kube-proxy 是集群中每个节点上运行的网络代理,实现 Kubernetes Service 概念的一部分。
kube-proxy 维护节点上的网络规则。这些网络规则允许从集群内部或外部的网络会话与 Pod 进行网络通信。
如果操作系统提供了数据包过滤层并可用的话,kube-proxy会通过它来实现网络规则。否则,kube-proxy 仅转发流量本身。
systemctl status kube-proxy.service
容器运行环境是负责运行容器的软件。
Kubernetes 支持多个容器运行环境: Docker、 containerd、cri-o、 rktlet 以及任何实现 Kubernetes CRI (容器运行环境接口)。
插件使用 Kubernetes 资源 (DaemonSet, Deployment等) 实现集群功能。因为这些提供集群级别的功能,所以插件的命名空间资源属于 kube-system
命名空间。
所选的插件如下所述:有关可用插件的扩展列表,请参见插件 (Addons)。
尽管并非严格要求其他附加组件,但所有示例都依赖集群 DNS,因此所有 Kubernetes 集群都应具有 DNS。
除了您环境中的其他 DNS 服务器之外,集群 DNS 还是一个 DNS 服务器,它为 Kubernetes 服务提供 DNS 记录。
Cluster DNS 是一个 DNS 服务器,和您部署环境中的其他 DNS 服务器一起工作,为 Kubernetes 服务提供DNS记录。
Kubernetes 启动的容器自动将 DNS 服务器包含在 DNS 搜索中。
DNS在kubernetes 中非常重要,很多pod 对应的域名都需要dns解析,并且当前运维环境中,dns 物理机是选择的对应的node节点;
Dashboard 是 Kubernetes 集群的通用基于 Web 的 UI。它使用户可以管理集群中运行的应用程序以及集群本身并进行故障排除。
容器资源监控将关于容器的一些常见的时间序列度量值保存到一个集中的数据库中,并提供用于浏览这些数据的界面。
集群层面日志 机制负责将容器的日志数据保存到一个集中的日志存储中,该存储能够提供搜索和浏览接口。
A Kubernetes cluster consists of 集群由一组被称作节点的机器组成。这些节点上运行 Kubernetes 所管理的容器化应用。集群具有至少一个工作节点和至少一个主节点。
工作节点托管作为应用程序组件的 Pod 。主节点管理集群中的工作节点和 Pod 。多个主节点用于为集群提供故障转移和高可用性。