- 基于SVm和随机森林算法模型的中国黄金价格预测分析与研究
python编程狮
支持向量机算法随机森林python机器学习人工智能
摘要本研究基于回归模型,运用支持向量机(SVM)、决策树和随机森林算法,对中国黄金价格进行预测分析。通过历史黄金价格数据的分析和特征工程,建立了相应的预测模型,并利用SVM、决策树和随机森林算法进行训练和预测。首先,通过对黄金价格时间序列数据的探索性分析,发现黄金价格存在一定的趋势和季节性变化。随后,进行了数据预处理和特征选择,为建立准确的预测模型奠定了基础。分别使用SVM、决策树和随机森林算法建
- 2023-04-21
感恩学习相信小陶
感恩!六点签到舒适区的消解无时不在、无处不在,不仅生理上如此,技能和认知上也是如此。《刻意练习》的研究者指出,训练引起的认知和生理变化要想持续,就不能停止训练,一旦停止训练,它们便开始消失。也就是说,我们通过辛辛苦苦的训练培养的绘画、演奏、写作等技能一旦荒废,就会退化。因为大脑中相关脑区的神经不再受到刺激,神经关联就会减弱,原先建立的连接也可能慢慢断开。所以这个世界上没有能够长期逗留的舒适区,贪恋
- Python训练 + Go优化 + C#部署:端到端AI模型的跨语言实践
威哥说编程
人工智能学习资料库pythongolangc#
在现代AI应用中,如何高效地训练、优化、并最终部署AI模型是一项复杂且具有挑战性的任务。在这一过程中,选择合适的编程语言和工具可以显著提高效率和系统的性能。Python作为AI领域的主流语言,具有丰富的深度学习框架(如PyTorch和TensorFlow),在模型训练方面处于领先地位。然而,针对计算密集型任务(如数据预处理、加密等),Go语言因其高效的并发处理和出色的性能,成为优化计算的理想选择。
- Matlab学习笔记:矩阵基础
MATLAB学习笔记:矩阵基础作为MATLAB的核心,矩阵是处理数据的基础工具。矩阵本质上是一个二维数组,由行和列组成,用于存储和操作数值数据。在本节中,我将详细讲解矩阵的所有知识点,包括创建、索引、运算、函数等,确保内容通俗易懂。我会在关键地方添加MATLAB代码示例,帮助你直观理解。最后,我会总结本课重点,并引出下一节“逻辑基础”的内容。一、什么是矩阵?在MATLAB中,矩阵是一个二维数组,元
- YOLO目标检测模型优化技术全景解析
YOLO目标检测模型优化技术全景解析作为实时目标检测领域的标杆算法,YOLO系列模型通过持续的技术革新不断提升性能边界。本文将从模型架构设计、数据优化、注意力机制融合、后处理策略及训练方法等维度,系统剖析YOLO优化领域的关键技术与最新进展。一、模型架构优化:突破性能瓶颈的核心路径多尺度检测层增强针对小目标检测难题,主流方案通过增加浅层检测通道优化特征提取。例如在YOLOv5中引入160×160特
- DL00478-涡轮叶片缺陷检测数据集yolo格式1300张左右
涡轮叶片缺陷检测数据集yolo格式1300张左右涡轮叶片缺陷检测数据集YOLO格式解析:提升研究与论文写作的关键要点在研究涡轮叶片缺陷检测的过程中,数据集的选择和格式处理是一个至关重要的环节。特别是当你打算通过卷积神经网络(CNN)等深度学习模型进行缺陷检测时,数据集的标注和格式化直接影响到模型的训练效果和论文的质量。本文将重点探讨涡轮叶片缺陷检测数据集的YOLO格式,并分析如何利用这一格式为研究
- YOLO 目标检测的改进方法
YOLO目标检测的改进方法可以从模型架构、训练策略、损失函数等多个方面入手,以下是一些常见的改进方法方向及参考文献:模型架构改进骨干网络替换:使用更轻量或更强大的网络替换原始骨干网络。轻量级网络如MobileNetV3、ShuffleNetV2等适合移动端部署,可提高推理速度;高性能网络如ConvNeXt、SwinTransformer等能提取更丰富的语义特征,提升检测精度。还可添加CBAM、SE
- 分类模型(BERT)训练全流程
巴伦是只猫
人工智能分类bert数据挖掘
使用BERT实现分类模型的完整训练流程BERT(BidirectionalEncoderRepresentationsfromTransformers)是一种强大的预训练语言模型,在各种NLP任务中表现出色。下面我将详细梳理使用BERT实现文本分类模型的完整训练过程。1.准备工作1.1环境配置pipinstalltransformerstorchtensorflowpandassklearn1.2
- 新活法训练营第七天2022-03-21
Diana_58d9
破解困惑的根源必修:学完这一课,你有哪些收获和心得,写出至少三点。1、通过张老师对动物假死的讲解,知道了所有的疼痛都是潜意识里的一种自我保护,叫创伤胶囊。对于创伤胶囊里的人或动物,给他足够的时间让他自己恢复是最好的。2、困惑也是启动了心理保护机制,是一种自我保护,面对困惑,首先接纳他,允许他在,第二,慢慢走进它,接受他在我们身上,第三,放下,转身做该做的事。如何突破困惑,首先有足够的意愿度,才能醒
- 2020-5-7晨间日记
邓芬芳
今天是什么日子起床:五点三十五就寝:十一点之前天气:阴天有雨心情:焦虑纪念日:高品质的生活需要适度的焦虑任务清单昨日完成的任务,最重要的三件事:打扫卫生、听课、准备复学第一课团体训练活动改进:团体训练活动准备的不理想习惯养成:科学、合理安排时间,提高效率,知行合一周目标·完成进度积极主动高效快速完成领导安排的任务学习·信息·阅读继续阅读《自卑与超越》《权宜之计》等书籍继续学习微笑主义——整合心理学
- 收视率怎么赚钱?这篇文章为你揭秘电视剧怎么赚钱的
氧惠全网优惠
现在的人们几乎都是有刷剧的习惯,我们忙完了一天的工作以后都是会看上有些东西,也是成为了我们生活当中必不可少的一个娱乐项目,甚至好多人为了看电视剧可以熬一整个通宵,目的就是看到他们最后的大结局。氧惠APP是与以往完全不同的抖客+淘客app!2024全新模式,我的直推也会放到你下面。主打:带货高补贴,深受各位带货团队长喜爱(训练营导师每天出单带货几万单)。注册即可享受高补贴+0撸+捡漏等带货新体验。古
- 大模型微调技术的详细解析及对比
老兵发新帖
人工智能大数据
以下是四种主流大模型微调技术的详细解析及对比,结合技术原理、适用场景与性能表现进行说明:1.Full-tuning(全量微调)核心原理:加载预训练模型的所有参数,用特定任务数据(通常为指令-回答对)继续训练,更新全部权重。相当于对模型整体知识结构进行重构。操作流程:加载预训练模型;用任务数据集(如分类文本)和优化目标(如最小化误差)训练;所有参数参与梯度更新。优势:模型充分学习任务特征,效果通常最
- 大模型训练中的“训练阶段”(如Pre-training、SFT、RLHF等)与“微调技术”
老兵发新帖
人工智能深度学习机器学习
大模型训练中的“训练阶段”(如Pre-training、SFT、RLHF等)与“微调技术”(如Full-tuning、Freeze-tuning、LoRA、QLoRA)是两类不同维度的概念,二者共同构成模型优化的完整流程。以下是二者的关系解析及技术对照:一、训练阶段的核心流程与目标预训练(Pre-training)目标:在无标注通用数据(如互联网文本)上训练模型,学习语言、视觉等通用特征。微调技术
- Epoch
老兵发新帖
人工智能
在深度学习和机器学习中,Epoch(轮次或周期)是一个核心训练概念,指模型在整个训练数据集上完成一次完整遍历的过程。以下是关于Epoch的详细解析:一、核心定义基本含义Epoch表示模型将所有训练数据完整学习一次的过程。例如:若训练集有10,000个样本,则1个Epoch即模型用这10,000个样本训练一轮。与相关概念的关系Batch(批次):数据集被分割成的小组(如每批32个样本)。Iterat
- Python --- day 10 Opencv模块的使用
AnAn__kang
pythonopencv开发语言
系列文章目录前言今天博主带大家进入Opencv的学习,这是一个专门针对处理图像和视频的一个模块,大家以理解为主,增强自己的编程思维,再后续我们训练模型时会大批量的处理图片时会经常用到这个模块。1OpenCV介绍OpenCV(开放源代码计算机视觉库)是一个开源的计算机视觉和机器学习软件库。由一系列C++类和函数构成,用于图像处理、计算机视觉领域的算法实现。1.1OpenCV优势**开源免费:**完全
- 【无标题】迭代器和生成器的区别及其各自实现方式和使用场景
AnAn__kang
python机器学习开发语言
系列文章目录前言小伙伴们,今天我们将进入迭代器和生成器的使用,这俩个呢对我们处理信息的时候帮助是非常大的。对于我们的电脑将减轻负重,不至于内存的损耗过大。未来我们在训练模型处理数据时,会频繁的使用生成器。一,迭代器Iterator迭代器提供了一种惰性(lazyevaluation)获取数据的方法,使得我们能够逐步访问序列中的元素,而无需一次性加载所有数据。其主要优点包括节省内存、提高性能、支持自定
- 快手开源 Kwaipilot-AutoThink 思考模型,有效解决过度思考问题
新闻在专为防止数据泄露设计的挑战性基准测试LiveCodeBenchPro中,Kwaipilot-AutoThink位列所有开源模型榜首,甚至超越了Seed和o3-mini等强大的专有系统。介绍KAT(Kwaipilot-AutoThink)是一个开源大语言模型,通过学习何时生成显式思维链及何时直接作答,有效缓解过度思考问题。它的发展遵循简洁的两阶段训练流程:阶段核心思想关键技术成果1.预训练阶段
- 深度学习图像分类数据集—百种病虫害分类
AI街潜水的八角
深度学习图像数据集深度学习分类人工智能
该数据集为图像分类数据集,适用于ResNet、VGG等卷积神经网络,SENet、CBAM等注意力机制相关算法,VisionTransformer等Transformer相关算法。数据集信息介绍:百种病虫害识别分类,训练集45095张,验证集7508张,测试集22619张具体类别为以下:insect_classes=["rice_leaf_roller","rice_leaf_caterpillar
- 基于深度学习的语音识别:从音频信号到文本转录
Blossom.118
机器学习与人工智能深度学习语音识别音视频人工智能机器学习线性代数计算机视觉
前言语音识别(AutomaticSpeechRecognition,ASR)是人工智能领域中一个极具挑战性和应用前景的研究方向。它通过将语音信号转换为文本,为人们提供了更加自然和便捷的人机交互方式。近年来,深度学习技术在语音识别领域取得了显著进展,极大地提高了语音识别的准确率和鲁棒性。本文将详细介绍如何使用深度学习技术构建一个语音识别系统,从音频信号的预处理到模型的训练与部署。一、语音识别的基本概
- 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
Ryan_sz1
1、过拟合、欠拟合及其解决方案过拟合、欠拟合机器学习或者训练深度神经网络的时候经常会出现欠拟合和过拟合这两个问题,但是,一开始我们的模型往往是欠拟合的,也正是因为如此才有了优化的空间,我们需要不断的调整算法来使得模型的表达能拿更强。但是优化到了一定程度就需要解决过拟合的问题了。也就是说欠拟合是模型表达能力不够,达不到很好的表达效果。而过拟合是在训练集的范围内表达能力过强,导致完全拟合了训练集。解决
- 告别瘦弱肌,3招有效,让你秒变型男!
硬刻时代
有些肌友们在增肌的过程中,会发现怎么吃怎么练也不见效果,就认为与自身的吸收以及训练强度不够造成的。其实造成肌肉增长不明显,有很多的原因,比如说饮食、训练方法与频率、营养补剂、个人体质,身体的代谢等都有很大的关联!有一些人天生就是瘦弱的体质,怎么练肌肉增长的就是不明显,其实无论是天生的瘦弱的体质还是后期的训练增肌慢,都会给需要增肌的肌友们带来很大的困扰。想要解决这个问题首先就需要从不同类型的增肌人群
- 思维导图学习之二阶:实践力第四节
纯优妈咪
时间:2021.5.29课程:简快导图之《杨柳》,核心心法:关键词和逻辑。课程收获:首先老师讲了拆解的意义,比如我们在给孩子讲解绘本的时候,我们会把它拆解成大类,中类,小类,小小类。那么拆解有什么意义呢?它可以使我们思路更清晰,把复杂的事情经过层层的分层分级,最终明白和理解的一个过程。这节课还是进行收敛型思维的训练,以《杨柳》为例展开。第一步:通读全文;第二步:通文理解(略);第三步:逐句找关键词
- 2024年1月15日学习记录——有关resnet18的简单再实现
BARBERUM
学习深度学习人工智能
2024年1月15日学习记录1.有关resnet18重写并训练的任务resnet本意为resdualnet,就是残差神经网络,利用shortcut的连接方式,将特征层隔层连接,在保留原有特征的同时进行深层卷积。可以有效的解决因神经网络层数的叠加而导致的退化问题。根据以下的逻辑图实现:首先图片作为输入,格式为[3,32,32]经过一个7*7的卷积核和一个最大池化层后进入残差结构层第一级残差结构层为两
- 【7.28早分享】抗挫力强大的孩子背后,都站着一位这样的妈妈
graceLiu_621
在社会飞速发展、精神压力巨大的今天,如何有效提升孩子的抗挫力,是很多家长关注的话题。有些家长觉得,现在孩子物质太丰富,得让孩子多经历挫败,多对孩子吼一吼、喊一喊,让他们知道生活没那么容易,抗挫力就有了;也有家长认为,现在孩子吃苦太少,得多让他们体验一下生活的艰苦才行,一些把孩子送到偏远山村“忆苦思甜”的节目和活动也不在少数;还有一些家长,直接把孩子送到各种军训、体能训练营中,认为通过这种体能和毅力
- Lily的Scalers Talk第八轮新概念朗读持续力训练Day219 2023-07-06
草木Lily
Lesson14-1TheButterflyEffectBeyondtwoorthreedays,theworld'sbestweatherforecastsarespeculative,andbeyondsixorseventheyareworthless.TheButterflyEffectisthereason.Forsmallpiecesofweather--andtoaglobalfor
- 展麟文化随笔第3期:网创思维训练
展麟文化
(一)我原来居住的环境很差,当时自己太迷信一句话了,生于忧患,死于安乐,在艰苦的环境里,人才可以蜕变。在我搬家后,恍然大悟,环境造就人,环境也毁灭人,马瘦毛长,人穷志短。我们的村原本很穷,穷人多的地方一定革命性强,大家为了改变自己的命运,一定都会呕心沥血地奋斗,现实告诉我,一边凉快去,时间久了,大家就习惯贫穷了,有吃有喝,还图啥?如果真正经历了世界的繁华,也许观天看景,待人接物,又是另外一种态度。
- 第二章 从管理自我到管理他人(七)
LiangL
六种一线经理管理很多从事产品生产的计时工人的工厂领班管理八九个分散工作的销售人员的销售经理管理四名经过严格训练的下属的财务经理管理30名直接下属的呼叫中心经理实验室中负责一个博士研究团队的经理管理几名熟练技术工人的工程部经理,包括电工、水暖工、转配工、木匠。这些管理者都需要:计划工作、分配任务、监督进度、给予反馈、教练辅导、绩效考核、招聘和解雇等。——————————新任一线经理转型不成功,初期迹
- 2023-09-20
a26ba155d68d
正念饮食让你实现更自在的人生如果你正面临减重或是增重或是健康饮食,《学会吃饭》这本书里关于正念饮食的方法会让你体会正念饮食所带来的健康和幸福感,会带给你更平衡、更满足、更自在的饮食态度。会让你通过训练逐渐养成平衡健康的生活方式,开心享受美食所带来的幸福感。一一认识正念饮食。正念饮食是利用一种全新的方式看待我们与进食及食物之间的关系。它的依据是从科学角度对身心自我调控,而不是意志力严格的自我控管。它
- 体会好课设计
啊大甘
体会好课设计摘录:1、设计好课是每一位语文教师的追求,但好课的评价标准却众说纷纭。2、好课,是遵循新课标精神和有关具体要求的课;是充分利用教材、突显语言学用的课;是关注读写技能训练、特别关注精读训练的课;是学生实践活动充分、知识积累丰富的课;是讲求课堂教学效率、着眼于学生集体训练的课。好课没有统一的模式,好课不需要口号标榜,好课特别依凭于教师正确的教学理念与一定的教学实力。一、好课设计之“实”实,
- GPT-3 面试题
简介1、GPT-3是什么?它是基于什么模型的?GPT-3是一种基于深度学习原理的语言预测模型。它是由OpenAI开发的,可以从互联网数据中生成任何类型的文本。它只需要一小段文本作为输入,就可以生成大量的准确和复杂的机器生成文本²⁴。GPT-3是基于Transformer模型的,使用了仅有解码器的自回归架构。它使用下一个单词预测目标进行训练¹²。GPT-3有8个不同的模型,参数从1.25亿到1750
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理