数据摘要算法的测试效率(SHA、MD5和CRC32)

1、算法概述

数据摘要算法是密码学算法中非常重要的一个分支,它通过对所有数据提取指纹信息以实现数据签名、数据完整性校验等功能,由于其不可逆性,有时候会被用做敏感信息的加密。数据摘要算法也被称为哈希(Hash)算法或散列算法。

1.1 CRC8、CRC16、CRC32

CRC(Cyclic Redundancy Check,循环冗余校验)算法出现时间较长,应用也十分广泛,尤其是通讯领域,现在应用最多的就是 CRC32 算法,它产生一个4字节(32位)的校验值,一般是以8位十六进制数,如FA 12 CD 45等。CRC算法的优点在于简便、速度快,严格的来说,CRC更应该被称为数据校验算法,但其功能与数据摘要算法类似,因此也作为测试的可选算法。

  在 WinRAR、WinZIP 等软件中,也是以 CRC32 作为文件校验算法的。一般常见的简单文件校验(Simple File Verify – SFV)也是以 CRC32算法为基础,它通过生成一个后缀名为.SFV 的文本文件,这样可以任何时候可以将文件内容 CRC32运算的结果与 .SFV 文件中的值对比来确定此文件的完整性。与 SFV 相关工具软件有很多,如MagicSFV、MooSFV等。

1.2 MD2 、MD4、MD5

  这是应用非常广泛的一个算法家族,尤其是 MD5(Message-Digest Algorithm 5,消息摘要算法版本5),它由MD2、MD3、MD4发展而来,由Ron Rivest(RSA公司)在1992年提出,目前被广泛应用于数据完整性校验、数据(消息)摘要、数据加密等。MD2、MD4、MD5 都产生16字节(128位)的校验值,一般用32位十六进制数表示。MD2的算法较慢但相对安全,MD4速度很快,但安全性下降,MD5比MD4更安全、速度更快。

  目前在互联网上进行大文件传输时,都要得用MD5算法产生一个与文件匹配的、存储MD5值的文本文件(后缀名为 .md5或.md5sum),这样接收者在接收到文件后,就可以利用与 SFV 类似的方法来检查文件完整性,目前绝大多数大型软件公司或开源组织都是以这种方式来校验数据完整性,而且部分操作系统也使用此算法来对用户密码进行加密,另外,它也是目前计算机犯罪中数据取证的最常用算法。与MD5 相关的工具有很多,如 WinMD5等。

1.3 SHA1、SHA256、SHA384、SHA512

  SHA(Secure Hash Algorithm)是由美国专门制定密码算法的标准机构——美国国家标准技术研究院(NIST)制定的,SHA系列算法的摘要长度分别为:SHA为20字节(160位)、SHA256为32字节(256位)、 SHA384为48字节(384位)、SHA512为64字节(512位),由于它产生的数据摘要的长度更长,因此更难以发生碰撞,因此也更为安全,它是未来数据摘要算法的发展方向。由于SHA系列算法的数据摘要长度较长,因此其运算速度与MD5相比,也相对较慢。

  目前SHA1的应用较为广泛,主要应用于CA和数字证书中,另外在目前互联网中流行的BT软件中,也是使用SHA1来进行文件校验的。

1.4 RIPEMD、PANAMA、TIGER、ADLER32 等

  RIPEMD是Hans Dobbertin等3人在对MD4,MD5缺陷分析基础上,于1996年提出来的,有4个标准128、160、256和320,其对应输出长度分别为16字节、20字节、32字节和40字节。TIGER由Ross在1995年提出。Tiger号称是最快的Hash算法,专门为64位机器做了优化。

2、算法测试

2.1 测试方法

  • 测试范围 :常见的数据校验、摘要算法,主要有 CRC32、MD5、SHA1、SHA256、SHA384、SHA512
  • 样本数据 :2G大小Vmware 虚拟机操作系统的磁盘文件,其中包含其中各种类型的文件,如二进制文件和文本文件等。
  • 软件平台 :Windows、.NET Framework 2.0
  • 硬件平台 :
    • 机器A(SCSI Disk):软件配置 Windows 2000 + .Net Framework 2.0;硬件配置 CPU:4 (Xeon),2.8G,RAM:2G ,HD:70 GB SCSI
    • 机器B(IDE Disk):软件配置 Windows 2003 + .Net Framework 2.0;硬件配置 CPU:1 (P4),2.8G,RAM:1G,HD:40 GB IDE

  考虑到整个测试过程只是涉及到文件读取与哈希值的计算,并无过多的与操作系统、软件平台、开发语言相关的操作,因此可以认为上述测试方法的结果具有普遍性,即也适用于其它操作系统平台(如Linux/Unix)或应用语言/平台(C、Java)。

2.2 测试结果

  1)不同配置机器间的对比

  在不同机器配置上的平均运算结果如下表所示:

数据摘要算法的测试效率(SHA、MD5和CRC32)_第1张图片

  注1:配有SCSI磁盘的机器运行时间反而比 IDE 磁盘时间长,可能是由于前者具有较多的应用负载造成的,如Oracle、WebSphere等,而且其OS为 Windows 2000,在之上运行 .NET 应用程序可能与 Windows 2003 的效率有所差别

  注2:上述算法中,只有 CRC32 没有包含在.NET Framework 中,而是使用C#单独实现的,因此可能会对其测试结果带来一些影响。

  2)不同算法的CPU占用率比较

  在不同的算法运行时,在机器B上监控其对于 CPU 的平均使用时间,结果如下表所示:

数据摘要算法的测试效率(SHA、MD5和CRC32)_第2张图片

3、实验结论

  • 数据摘要算法的处理是很快的,在一般配置的PC机上使用MD5算法,处理1G的文件数据只需20-30秒(有些专用设备声称达 3GB/秒),不会对应用或机器带来过多负载
  • MD5、SHA1虽然被发现存在缺陷(碰撞),但在近几年内,仍然可以大量使用
  • SHA256/384/512 的速度较慢,可以用于少量数据摘要,目前不适合用于大文件校验

  CRC32为32bit的简单hash,MD5为128bit较复杂的hash算法。直觉上貌似CRC32的计算速度要比MD5快的。今天用FlexHEX计算大文件的hash时发现CRC32相对MD5并没有明显优势。

  实验发现:Linux操作系统下用md5sum和cksum取文件哈希:MD5仅花费CRC32时间的72%左右。

  • MD5计算速度要明显优于CRC32!

4、文章来源

    1)http://dearymz.blog.163.com/blog/static/205657420116205415458/

    2)http://www.getcn.net/index.php?mod=skill&action=detail&id=43881

 

备注:以上关于MD5和CRC的比较应该是错误的。因为MD5和CRC测试的

网上有人用python计算MD5和crc的速度。

https://segmentfault.com/a/1190000004000838

PASS
BenchmarkCrc32-4 20000000 64.9 ns/op
BenchmarkMd5-4 5000000 274 ns/op
ok test 3.022s

md5大致慢4倍左右

CRC32、MD5、SHA1概念及可靠性现状

转自http://www.metsky.com/archives/337.html

昨天介绍了Windows 7的版本识别问题,不得不提到常用的CRC32、MD5、SHA1等校验算法可靠性问题,如果只是单纯的编码理论,天缘还算是可以看懂,但对密码学整体认识毕竟不是行内人,所以也只能从一些皮毛概念上简单介绍一下,实际上这些算法本身并不复杂,但每种算法的创立都是伟大壮举,这里天缘也把他们(W. Wesley Peterson和Ronald L. Rivest)请到摘要里,感恩一下。

现在网上流传最广的文件校验方式是MD5和SHA1,微软发布的操作系统现在都是采用CRC32结合SHA1发布。这三种算法中属CRC最年长,也是应用最广泛,如果不考虑碰撞的条件下,这些算法都可以发现传输或保存的信息受到的损坏或篡改,比如文件校验可以防止文件被恶意篡改,数字签名可以保护合法者不被仿冒,系统鉴权一方面要保护用户存储信息不受侵害,还需要保护信息传输过程不受干扰破坏等等,下面具体看一下。

 

1、CRC校验

CRC全称Cyclic Redundancy Check,又叫循环冗余校验。它是一种散列函数(HASH,把任意长度的输入通过散列算法,最终变换成固定长度的摘要输出,其结果就是散列值,按照HASH算法,HASH具有单向性,不可逆性),用来检测或校验传输或保存的数据错误,在通信领域广泛地用于实现差错控制,比如通信系统多使用CRC12和CRC16,XMODEM使用CRC16等等(12、16、32等值均是指多项式的最高阶N次幂),天缘早前在做通信方面工作时也是最常用到这个校验方法,因为其编解码方法都非常简单,运算时间也很短。

但从理论角度,CRC不能完全可靠的验证数据完整性,因为CRC多项式是线性结构,很容易通过改变数据方式达到CRC碰撞,天缘这里给一个更加通俗的解释,假设一串带有CRC校验的代码在传输中,如果连续出现差错,当出错次数达到一定次数时,那么几乎可以肯定会出现一次碰撞(值不对但CRC结果正确),但随着CRC数据位增加,碰撞几率会显著降低,比如CRC32比CRC16具有更可靠的验证性,CRC64又会比CRC32更可靠,当然这都是按照ITU规范标准条件下。

正因为CRC具有以上特点,对于网络上传输的文件类很少只使用CRC作为校验依据,文件传输相比通信底层传输风险更大,很容易受到人为干预影响。

2、MD5

MD全称Message Digest,又称信息摘要算法,MD5从MD2/3/4演化而来,MD5散列长度通常是128位, 也是目前被大量广泛使用的散列算法之一,主要用于密码加密和文件校验等。MD5的算法虽然非常“牢靠”,不过也已经被找到碰撞的方法,网上虽然出现有些碰撞软件,天缘没用过,但可以肯定,实际作用范围相当有限,比如,及时黑客拿到了PASSWORD MD5值,除了暴力破解,即使找到碰撞结果也未必能够影响用户安全问题,因为对于密码还要限定位数、类型等,但是如果是面向数字签名等应用,可能就会被破解掉,不过,MD5同下文的SHA1仍是目前应用最广泛的HASH算法,他们都是在MD4基础上改进设计的。

3、SHA1

SHA全称Secure Hash Standard,又称安全哈希标准,SHA家族算法有SHA-1、SHA-224、SHA-256、SHA-384和SHA-512(后四者通常并称SHA2),原理和MD4、MD5原理相似,SHA是由美国国家安全局(NSA)所设计,由美国国家标准与技术研究院(NIST)发布。SHA可将一个最大2^64位(2305843009213693952字节)信息,转换成一串160位(20字节)的散列值(摘要信息),目前也是应用最广泛的HASH算法。同MD5一样,从理论角度,SHA1也不是绝对可靠,目前也已经找到SHA1的碰撞条件,但“实用”的碰撞算法软件还没出现。于是美国NIST又开始使用SHA2,研究更新的加密算法。

校验工具下载:

三 款主流文件校验码工具HashCalc、WinMD5、Hasher

补 充

1、上文“碰撞”的解释,碰撞就是不同明文通过HASH后的结果相同。

2、MD5和SHA1都具有高度的离散性,哪怕是只修改一个字节值都会导致MD5或SHA1值“巨大”变化,从实践角度,不同信息具有相同MD5或SHA1码 的可能性非常低,通常认为是不可能的。

3、对于普通的下载文件或操作系统,想通过简单的修改某个字节或某些字节,又要保证文件名、大小和安装可靠性的前提下,想达到MD5、SHA1碰撞效果也几乎是不可能的。

4、关于单线程下载和多线程下载是否会对下载文件的准确性有影响,像电驴、迅雷都是按照HASH码进行合法校验“拼装”的,除非是软件出了错误,否则单线程多线程跟最终下载结果没有区别,从微软服务器下载跟从山寨网站下载结果也没有区别。

5、总之,有生之年,大家可以不相信CRC,但是MD5和SHA1绝对值得信赖,敬请放心,他们比天气预报要可靠的多了。

你可能感兴趣的:(数据摘要算法的测试效率(SHA、MD5和CRC32))