1:java 的数据类型
byte shot long int char double float boolean
2:java 的访问类型
private 同一个类下访问
defaut 同一个包下
protected 子类访问
public 所有
3:jdbc 过程
1:加载数据库驱动:
1.PreparedStatement是预编译的,对于批量处理可以大大提高效率. 也叫JDBC存储过程 2.使用 Statement 对象。在对数据库只执行一次性存取的时侯,用 Statement 对象进行处理。PreparedStatement 对象的开销比Statement大,对于一次性操作并不会带来额外的好处。 3.statement每次执行sql语句,相关数据库都要执行sql语句的编译,preparedstatement是预编译得, preparedstatement支持批处理 4. Code Fragment 1: String updateString = "UPDATE COFFEES SET SALES = 75 " + "WHERE COF_NAME LIKE ′Colombian′"; stmt.executeUpdate(updateString); Code Fragment 2: PreparedStatement updateSales = con.prepareStatement("UPDATE COFFEES SET SALES = ? WHERE COF_NAME LIKE ? "); updateSales.setInt(1, 75); updateSales.setString(2, "Colombian"); updateSales.executeUpdate(); 片断2和片断1的区别在于,后者使用了PreparedStatement对象,而前者是普通的Statement对象。PreparedStatement对象不仅包含了SQL语句,而且大多数情况下这个语句已经被预编译过,因而当其执行时,只需DBMS运行SQL语句,而不必先编译。当你需要执行Statement对象多次的时候,PreparedStatement对象将会大大降低运行时间,当然也加快了访问数据库的速度。 这种转换也给你带来很大的便利,不必重复SQL语句的句法,而只需更改其中变量的值,便可重新执行SQL语句。选择PreparedStatement对象与否,在于相同句法的SQL语句是否执行了多次,而且两次之间的差别仅仅是变量的不同。如果仅仅执行了一次的话,它应该和普通的对象毫无差异,体现不出它预编译的优越性。 5.执行许多SQL语句的JDBC程序产生大量的Statement和PreparedStatement对象。通常认为PreparedStatement对象比Statement对象更有效,特别是如果带有不同参数的同一SQL语句被多次执行的时候。PreparedStatement对象允许数据库预编译SQL语句,这样在随后的运行中可以节省时间并增加代码的可读性。 然而,在Oracle环境中,开发人员实际上有更大的灵活性。当使用Statement或PreparedStatement对象时,Oracle数据库会缓存SQL语句以便以后使用。在一些情况下,由于驱动器自身需要额外的处理和在Java应用程序和Oracle服务器间增加的网络活动,执行PreparedStatement对象实际上会花更长的时间。 然而,除了缓冲的问题之外,至少还有一个更好的原因使我们在企业应用程序中更喜欢使用PreparedStatement对象,那就是安全性。传递给PreparedStatement对象的参数可以被强制进行类型转换,使开发人员可以确保在插入或查询数据时与底层的数据库格式匹配。 当处理公共Web站点上的用户传来的数据的时候,安全性的问题就变得极为重要。传递给PreparedStatement的字符串参数会自动被驱动器忽略。最简单的情况下,这就意味着当你的程序试着将字符串“D'Angelo”插入到VARCHAR2中时,该语句将不会识别第一个“,”,从而导致悲惨的失败。几乎很少有必要创建你自己的字符串忽略代码。 在Web环境中,有恶意的用户会利用那些设计不完善的、不能正确处理字符串的应用程序。特别是在公共Web站点上,在没有首先通过PreparedStatement对象处理的情况下,所有的用户输入都不应该传递给SQL语句。此外,在用户有机会修改SQL语句的地方,如HTML的隐藏区域或一个查询字符串上,SQL语句都不应该被显示出来。 在执行SQL命令时,我们有二种选择:可以使用PreparedStatement对象,也可以使用Statement对象。无论多少次地使用同一个SQL命令,PreparedStatement都只对它解析和编译一次。当使用Statement对象时,每次执行一个SQL命令时,都会对它进行解析和编译。 第一: prepareStatement会先初始化SQL,先把这个SQL提交到数据库中进行预处理,多次使用可提高效率。 createStatement不会初始化,没有预处理,没次都是从0开始执行SQL 第二: prepareStatement可以替换变量 在SQL语句中可以包含?,可以用ps=conn.prepareStatement("select * from Cust where ID=?"); int sid=1001; ps.setInt(1, sid); rs = ps.executeQuery(); 可以把?替换成变量。 而Statement只能用 int sid=1001; Statement stmt = conn.createStatement(); ResultSet rs = stmt.executeQuery("select * from Cust where ID="+sid); 来实现。 第三: prepareStatement会先初始化SQL,先把这个SQL提交到数据库中进行预处理,多次使用可提高效率。 createStatement不会初始化,没有预处理,没次都是从0开始执行SQL
------------------------------------------------------------------------------------------------------------------------------------------------------
ArrayList是List接口的一个可变长数组实现。实现了所有List接口的操作,并允许存储null值。除了没有进行同步,ArrayList基本等同于Vector。在Vector中几乎对所有的方法都进行了同步,但ArrayList仅对writeObject和readObject进行了同步,其它比如add(Object)、remove(int)等都没有同步。
1.存储
ArrayList使用一个Object的数组存储元素。
private transient Object elementData[];
ArrayList实现了java.io.Serializable接口,这儿的transient标示这个属性不需要自动序列化。下面会在writeObject()方法中详细讲解为什么要这样作。
2.add和remove
public boolean add(Object o) {
ensureCapacity(size + 1); // Increments modCount!!
elementData[size++] = o;
return true;
}
注意这儿的ensureCapacity()方法,它的作用是保证elementData数组的长度可以容纳一个新元素。在“自动变长机制”中将详细讲解。
public Object remove(int index) {
RangeCheck(index);
modCount++;
Object oldValue = elementData[index];
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // Let gc do its work
return oldValue;
}
RangeCheck()的作用是进行边界检查。由于ArrayList采用一个对象数组存储元素,所以在删除一个元素时需要把后面的元素前移。删除一个元素时只是把该元素在elementData数组中的引用置为null,具体的对象的销毁由垃圾收集器负责。
modCount的作用将在下面的“iterator()中的同步”中说明。
注:在前移时使用了System提供的一个实用方法:arraycopy(),在本例中可以看出System.arraycopy()方法可以对同一个数组进行操作,这个方法是一个native方法,如果对同一个数组进行操作时,会首先把从源部分拷贝到一个临时数组,在把临时数组的元素拷贝到目标位置。
3.自动变长机制
在实例化一个ArrayList时,你可以指定一个初始容量。这个容量就是elementData数组的初始长度。如果你使用:
ArrayList list = new ArrayList();
则使用缺省的容量:10。
public ArrayList() {
this(10);
}
ArrayList提供了四种add()方法,
public boolean add(Object o)
public void add(int index, Object element)
public boolean addAll(Collection c)
public boolean addAll(int index, Collection c)
在每一种add()方法中,都首先调用了一个ensureCapacity(int miniCapacity)方法,这个方法保证elementData数组的长度不小于miniCapacity。ArrayList的自动变长机制就是在这个方法中实现的。
public void ensureCapacity(int minCapacity) {
modCount++;
int oldCapacity = elementData.length;
if (minCapacity > oldCapacity) {
Object oldData[] = elementData;
int newCapacity = (oldCapacity * 3)/2 + 1;
if (newCapacity < minCapacity)
newCapacity = minCapacity;
elementData = new Object[newCapacity];
System.arraycopy(oldData, 0, elementData, 0, size);
}
}
从这个方法实现中可以看出ArrayList每次扩容,都扩大到原来大小的1.5倍。
每种add()方法的实现都大同小异,下面给出add(Object)方法的实现:
public boolean add(Object o) {
ensureCapacity(size + 1); // Increments modCount!!
elementData[size++] = o;
return true;
}
4.iterator()中的同步
在父类AbstractList中定义了一个int型的属性:modCount,记录了ArrayList结构性变化的次数。
protected transient int modCount = 0;
在ArrayList的所有涉及结构变化的方法中都增加modCount的值,包括:add()、remove()、addAll()、removeRange()及clear()方法。这些方法每调用一次,modCount的值就加1。
注:add()及addAll()方法的modCount的值是在其中调用的ensureCapacity()方法中增加的。
AbstractList中的iterator()方法(ArrayList直接继承了这个方法)使用了一个私有内部成员类Itr,生成一个Itr对象(Iterator接口)返回:
public Iterator iterator() {
return new Itr();
}
Itr实现了Iterator()接口,其中也定义了一个int型的属性:expectedModCount,这个属性在Itr类初始化时被赋予ArrayList对象的modCount属性的值。
int expectedModCount = modCount;
注:内部成员类Itr也是ArrayList类的一个成员,它可以访问所有的AbstractList的属性和方法。理解了这一点,Itr类的实现就容易理解了。
在Itr.hasNext()方法中:
public boolean hasNext() {
return cursor != size();
}
调用了AbstractList的size()方法,比较当前光标位置是否越界。
在Itr.next()方法中,Itr也调用了定义在AbstractList中的get(int)方法,返回当前光标处的元素:
public Object next() {
try {
Object next = get(cursor);
checkForComodification();
lastRet = cursor++;
return next;
} catch(IndexOutOfBoundsException e) {
checkForComodification();
throw new NoSuchElementException();
}
}
注意,在next()方法中调用了checkForComodification()方法,进行对修改的同步检查:
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
现在对modCount和expectedModCount的作用应该非常清楚了。在对一个集合对象进行跌代操作的同时,并不限制对集合对象的元素进行操作,这些操作包括一些可能引起跌代错误的add()或remove()等危险操作。在AbstractList中,使用了一个简单的机制来规避这些风险。这就是modCount和expectedModCount的作用所在。
5.序列化支持
ArrayList实现了java.io.Serializable接口,所以ArrayList对象可以序列化到持久存储介质中。ArrayList的主要属性定义如下:
private static final long serialVersionUID = 8683452581122892189L;
private transient Object elementData[];
private int size;
可以看出serialVersionUID和size都将自动序列化到介质中,但elementData数组对象却定义为transient了。也就是说ArrayList中的所有这些元素都不会自动系列化到介质中。为什么要这样实现?因为elementData数组中存储的“元素”其实仅是对这些元素的一个引用,并不是真正的对象,序列化一个对象的引用是毫无意义的,因为序列化是为了反序列化,当你反序列化时,这些对象的引用已经不可能指向原来的对象了。所以在这儿需要手工的对ArrayList的元素进行序列化操作。这就是writeObject()的作用。
private synchronized void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
s.defaultWriteObject();
// Write out array length
s.writeInt(elementData.length);
// Write out all elements in the proper order.
for (int i=0; i
}
这样元素数组elementData中的所以元素对象就可以正确地序列化到存储介质了。
对应的readObject()也按照writeObject()方法的顺序从输入流中读取:
private synchronized void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in size, and any hidden stuff
s.defaultReadObject();
// Read in array length and allocate array
int arrayLength = s.readInt();
elementData = new Object[arrayLength];
// Read in all elements in the proper order.
for (int i=0; i
}