Tensorflow 可视化 TensorBoard 尝试~

安装Tensorflow的过程就不必说了,安装官网或者google一下,很多资源。


这次实验是在Iris数据集进行的,下载链接


代码如下:

import os
import cv2
import numpy as np
import sys
import tensorflow as tf
import random
import math

def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

def load_iris(path):
    #check file exist.
    if not os.path.exists(path):
        print "path is not exist"
        return

    return_data = []
    return_label = []
    my_map = {}
    key = 0
    iris_file = open(path);
    for line in iris_file:
        #cut the \n
        line = line[:-1]
        elements = line.split(',')

        if len(elements) == 5:
            temp = elements[:-1]
            data = [float(x) for x in temp]
            category = elements[4]

            label = key
            if my_map.has_key(category):
                label = my_map[category]
            else:
                my_map[category] = key
                key = key + 1
            label_vector = [0] * 3;
            label_vector[label] = 1;
            return_data.append(data)
            return_label.append(label_vector)
    iris_file.close()
    return return_data,return_label
    
def run(train_path):
    #load data
    img,label = load_iris(train_path)
    sess = tf.InteractiveSession()

    #first layer.
    with tf.name_scope('input'):
        x = tf.placeholder("float", shape=[None, 4],name='x-input')
        y_ = tf.placeholder("float", shape=[None, 3],name='y-input')
    
    def next_batch(img,label,size):
        img_r =[]
        label_r = []
        for num in range(size):
            index = random.randint(0,len(img)-1)
            img_r.append(np.array(img[index]))
            label_r.append(np.array(label[index]))
        img_r = np.array(img_r)
        label_r = np.array(label_r)
        return {x:img_r,y_:label_r}
        
    def variable_summaries(var, name):
        with tf.name_scope('summaries'):
            mean = tf.reduce_mean(var)
            tf.scalar_summary('mean/' + name, mean)
            with tf.name_scope('stddev'):
                stddev = tf.sqrt(tf.reduce_sum(tf.square(var - mean)))
            tf.scalar_summary('sttdev/' + name, stddev)
            tf.scalar_summary('max/' + name, tf.reduce_max(var))
            tf.scalar_summary('min/' + name, tf.reduce_min(var))
            tf.histogram_summary(name, var)

    #fully connection
    def nn_layer(input,input_dim,output_dim,layer_name,act=tf.nn.relu):
        with tf.name_scope(layer_name):
            with tf.name_scope('W'):
                f_w_1 = weight_variable([input_dim,output_dim])
                variable_summaries(f_w_1, layer_name + '/weights')
            with tf.name_scope('B'):
                f_b_1 = bias_variable([output_dim])
                variable_summaries(f_b_1, layer_name + '/bias')
            with tf.name_scope('Wx_plus_b'):
                input_drop = tf.reshape(input,[-1,input_dim])
                f_r_1 = tf.matmul(input_drop,f_w_1) + f_b_1
                tf.histogram_summary(layer_name + '/pre_activations', f_r_1)
            activations = act(f_r_1, 'activation')
            tf.histogram_summary(layer_name + '/activations', activations)
            return activations
    
    l1_output = nn_layer(x,4,100,'layer1')
    l2_output = nn_layer(l1_output,100,3,'layer2',act=tf.nn.softmax)

    #
    with tf.name_scope('cross_entropy'):
        cross_entropy = -tf.reduce_sum(y_*tf.log(l2_output))
        tf.scalar_summary('cross entropy', cross_entropy)
    
    with tf.name_scope('train'):
        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
        correct_prediction = tf.equal(tf.argmax(l2_output,1), tf.argmax(y_,1))
    
    with tf.name_scope('accuracy'):
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    tf.scalar_summary('accuracy',accuracy)
    
    merged = tf.merge_all_summaries()
    train_writer = tf.train.SummaryWriter('/home/ubuntu/temp/log/train',sess.graph)
    test_writer = tf.train.SummaryWriter('/home/ubuntu/temp/log/test')
    tf.initialize_all_variables().run()
    
    for i in range(200000):
        if i % 100 == 0:  # Record summaries and test-set accuracy
            summary, acc = sess.run([merged, accuracy], feed_dict=next_batch(img,label,20))
            test_writer.add_summary(summary, i)
            print('Accuracy at step %s: %s' % (i, acc))
        else:  # Record train set summaries, and train
            if i % 100 == 99:  # Record execution stats
                run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()
                summary, _ = sess.run([merged, train_step],
                              feed_dict=next_batch(img,label,20),
                              options=run_options,
                              run_metadata=run_metadata)
                train_writer.add_run_metadata(run_metadata, 'step%d' % i)
                train_writer.add_summary(summary, i)
                print('Adding run metadata for', i)
            else:  # Record a summary
                summary, _ = sess.run([merged, train_step], feed_dict=next_batch(img,label,20))
                train_writer.add_summary(summary, i)

if __name__ == '__main__':
    run('iris.data.set.txt')

代码是参考tensorflow官网的例子进行实验的,官网例子如下:

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A simple MNIST classifier which displays summaries in TensorBoard.
 This is an unimpressive MNIST model, but it is a good example of using
tf.name_scope to make a graph legible in the TensorBoard graph explorer, and of
naming summary tags so that they are grouped meaningfully in TensorBoard.
It demonstrates the functionality of every TensorBoard dashboard.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data '
                     'for unit testing.')
flags.DEFINE_integer('max_steps', 1000, 'Number of steps to run trainer.')
flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.')
flags.DEFINE_float('dropout', 0.9, 'Keep probability for training dropout.')
flags.DEFINE_string('data_dir', '/tmp/data', 'Directory for storing data')
flags.DEFINE_string('summaries_dir', '/tmp/mnist_logs', 'Summaries directory')


def train():
  # Import data
  mnist = input_data.read_data_sets(FLAGS.data_dir,
                                    one_hot=True,
                                    fake_data=FLAGS.fake_data)

  sess = tf.InteractiveSession()

  # Create a multilayer model.

  # Input placehoolders
  with tf.name_scope('input'):
    x = tf.placeholder(tf.float32, [None, 784], name='x-input')
    y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')

  with tf.name_scope('input_reshape'):
    image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
    tf.image_summary('input', image_shaped_input, 10)

  # We can't initialize these variables to 0 - the network will get stuck.
  def weight_variable(shape):
    """Create a weight variable with appropriate initialization."""
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

  def bias_variable(shape):
    """Create a bias variable with appropriate initialization."""
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

  def variable_summaries(var, name):
    """Attach a lot of summaries to a Tensor."""
    with tf.name_scope('summaries'):
      mean = tf.reduce_mean(var)
      tf.scalar_summary('mean/' + name, mean)
      with tf.name_scope('stddev'):
        stddev = tf.sqrt(tf.reduce_sum(tf.square(var - mean)))
      tf.scalar_summary('sttdev/' + name, stddev)
      tf.scalar_summary('max/' + name, tf.reduce_max(var))
      tf.scalar_summary('min/' + name, tf.reduce_min(var))
      tf.histogram_summary(name, var)

  def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
    """Reusable code for making a simple neural net layer.
    It does a matrix multiply, bias add, and then uses relu to nonlinearize.
    It also sets up name scoping so that the resultant graph is easy to read,
    and adds a number of summary ops.
    """
    # Adding a name scope ensures logical grouping of the layers in the graph.
    with tf.name_scope(layer_name):
      # This Variable will hold the state of the weights for the layer
      with tf.name_scope('weights'):
        weights = weight_variable([input_dim, output_dim])
        variable_summaries(weights, layer_name + '/weights')
      with tf.name_scope('biases'):
        biases = bias_variable([output_dim])
        variable_summaries(biases, layer_name + '/biases')
      with tf.name_scope('Wx_plus_b'):
        preactivate = tf.matmul(input_tensor, weights) + biases
        tf.histogram_summary(layer_name + '/pre_activations', preactivate)
      activations = act(preactivate, 'activation')
      tf.histogram_summary(layer_name + '/activations', activations)
      return activations

  hidden1 = nn_layer(x, 784, 500, 'layer1')

  with tf.name_scope('dropout'):
    keep_prob = tf.placeholder(tf.float32)
    tf.scalar_summary('dropout_keep_probability', keep_prob)
    dropped = tf.nn.dropout(hidden1, keep_prob)

  y = nn_layer(dropped, 500, 10, 'layer2', act=tf.nn.softmax)

  with tf.name_scope('cross_entropy'):
    diff = y_ * tf.log(y)
    with tf.name_scope('total'):
      cross_entropy = -tf.reduce_mean(diff)
    tf.scalar_summary('cross entropy', cross_entropy)

  with tf.name_scope('train'):
    train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
        cross_entropy)

  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    with tf.name_scope('accuracy'):
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.scalar_summary('accuracy', accuracy)

  # Merge all the summaries and write them out to /tmp/mnist_logs (by default)
  merged = tf.merge_all_summaries()
  train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/train',
                                        sess.graph)
  test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/test')
  tf.initialize_all_variables().run()

  # Train the model, and also write summaries.
  # Every 10th step, measure test-set accuracy, and write test summaries
  # All other steps, run train_step on training data, & add training summaries

  def feed_dict(train):
    """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
    if train or FLAGS.fake_data:
      xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
      k = FLAGS.dropout
    else:
      xs, ys = mnist.test.images, mnist.test.labels
      k = 1.0
    return {x: xs, y_: ys, keep_prob: k}

  for i in range(FLAGS.max_steps):
    if i % 10 == 0:  # Record summaries and test-set accuracy
      summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
      test_writer.add_summary(summary, i)
      print('Accuracy at step %s: %s' % (i, acc))
    else:  # Record train set summaries, and train
      if i % 100 == 99:  # Record execution stats
        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        summary, _ = sess.run([merged, train_step],
                              feed_dict=feed_dict(True),
                              options=run_options,
                              run_metadata=run_metadata)
        train_writer.add_run_metadata(run_metadata, 'step%d' % i)
        train_writer.add_summary(summary, i)
        print('Adding run metadata for', i)
      else:  # Record a summary
        summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
        train_writer.add_summary(summary, i)


def main(_):
  if tf.gfile.Exists(FLAGS.summaries_dir):
    tf.gfile.DeleteRecursively(FLAGS.summaries_dir)
  tf.gfile.MakeDirs(FLAGS.summaries_dir)
  train()


if __name__ == '__main__':
  tf.app.run()

有了这个代码,就可以运行了。因为自己设置的目录是/home/ubuntu/temp/log,所以在tensorboard运行的时候要指定这个目录。

命令如下:

python tensorboard.py --logdir=/home/ubuntu/temp/log

之后访问一下指定地址:

Tensorflow 可视化 TensorBoard 尝试~_第1张图片


如果访问没有数据,可以在命令后面加上--debug来查看详细信息,


红色标记的是tensorboard监视的目录,查看一下是否正确。


如果还是不正确。。。就只能安装官网Readme来排查了:


就是这里

你可能感兴趣的:(python,ML,DL)