进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础。进程之间无法共享数据
import multiprocessing as mp
def job(q):
res=0
for i in range(1000):
res+=i+i**2+i**3
q.put(res)
if __name__=='__main__':
q=mp.Queue()
p1=mp.Process(target=job,args=(q,))
p2=mp.Process(target=job,args=(q,))
p1.start()
p2.start()
p1.join()
p2.join()
res1=q.get()
res2=q.get()
print(res1+res2)
利用队列将每个进程计算的结果进行存储。这里的进程初始化、启动、主进程阻塞设置与线程基本一致。
import multiprocessing as mp
import threading as td
import time
def job(q):
res = 0
for i in range(1000000):
res += i + i ** 2 + i ** 3
q.put(res)
def multiCore():
q = mp.Queue()
p1 = mp.Process(target=job, args=(q,))
p2 = mp.Process(target=job, args=(q,))
p1.start()
p2.start()
p1.join()
p2.join()
res1 = q.get()
res2 = q.get()
print('multiCore:',res1 + res2)
def normal():
res=0
for _ in range(2):
for i in range(1000000):
res+=i+i**2+i**3
print("normal: ",res)
def multiThread():
q=mp.Queue()
t1=td.Thread(target=job,args=(q,))
t2=td.Thread(target=job,args=(q,))
t1.start()
t2.start()
t1.join()
t2.join()
res1=q.get()
res2=q.get()
print('multiThread:',res2+res1)
if __name__ == '__main__':
st = time.time()
normal()
st1 = time.time()
print('normal time:', st1 - st)
multiThread()
st2 = time.time()
print('multithread time:', st2 - st1)
multiCore()
print('multicore time:', time.time() - st2)
输出如下:
这里多进程确实比普通的要快3倍,但是多线程比普通的还要慢,这是因为GIL全局锁的原因。
这里请注意,在CPU密集型任务下,多进程更快,或者说效果更好;而IO密集型,多线程能有效提高效率
import multiprocessing as mp
import time
def job(x):
return x**2
def multiCore(n):
pool=mp.Pool(processes=n)
res=pool.map(job,range(1000000))
#print(res)
#res=pool.apply_async(job,(2,))
#print(res.get())
#multi_res=[pool.apply_async(job,(j,)) for j in range(1000000)]
#print([res.get() for res in multi_res])
if __name__ == '__main__':
for i in range(1,7):
s_time=time.time()
multiCore(i)
print("使用%d个核花费时间为%s"%(i,time.time()-s_time))
import multiprocessing as mp
import time
value = mp.Value('d', 1)
array = mp.Array('i', [1, 2, 3, 4])
def job(v, num, lock):
lock.acquire()
for _ in range(10):
time.sleep(0.1)
v.value += num
print(v.value)
lock.release()
def multiCore():
lock = mp.Lock()
v = mp.Value('i', 0)
p1 = mp.Process(target=job, args=(v, 1, lock))
p2 = mp.Process(target=job, args=(v, 3, lock))
p1.start()
p2.start()
p1.join()
p2.join()
if __name__ == '__main__':
multiCore()
import multiprocessing as mp
import time
def job(x):
return x**2
def multiCore1():
pool=mp.Pool()
multi_res=[pool.apply(job,(j,)) for j in range(1000000)]
res=[res for res in multi_res]
#print(res)
#res=pool.apply_async(job,(2,))
#print(res.get())
#multi_res=[pool.apply_async(job,(j,)) for j in range(1000000)]
#print([res.get() for res in multi_res])
def multiCore2():
pool = mp.Pool()
multi_res = [pool.apply_async(job, (j,)) for j in range(1000000)]
res = [res.get() for res in multi_res]
if __name__ == '__main__':
s_time=time.time()
multiCore1()
print("apply运行时间:",time.time()-s_time)
s_time=time.time()
multiCore2()
print("apply_async运行时间:", time.time() - s_time)
apply方法是阻塞式的,比apply_asyncy要慢。