- Angular中`trackBy`函数的独特性与性能优化
t0_54program
编程问题解决手册angular.js前端javascript个人开发
在Angular项目中,优化性能是每一个开发者都需要考虑的问题。特别是在处理大数据量或动态变化的列表时,Angular的trackBy函数成为了我们手中的利器。然而,当我们面对多个列表使用相同trackBy函数时,可能会产生一些疑问:如果这些列表中的项有相同的ID,是否会影响Angular的变更检测?本文将详细探讨trackBy函数在这种情境下的表现及其带来的性能优化。trackBy函数简介tra
- 石油储运生产 2D 可视化,组态应用赋能工业智慧发展
智慧园区
智慧城市bigdata人工智能大数据物联网网络
当前,国际油价低位徘徊导致各国石油化工行业投资大幅缩减,石油化工建设行业竞争环境日趋严峻,施工企业的利润空间也被不断压缩。内外交困的环境下,促使企业采取更有效的管理手段来提高效率和降低成本。石油工业大数据具有无限潜力与价值,将大数据与数据挖掘技术应用其中,不仅可以提升石油行业工业化水平,而且对其智慧化发展起到强有力的推动作用。图扑软件-构建先进2D和3D可视化所需要的一切图扑软件采用自主研发的HT
- 人民日报报道,华为云赋能智能制造助力图扑软件构造数字孪生场景
智慧园区
华为人工智能物联网
2021年12月22日,《人民日报》头版头条刊登了《华为云赋能智能制造,助力图扑软件构造数字孪生场景》一文,聚焦数据可视化建设发展。报道指出,数字经济发展的背后,是大数据时趋势下各地区积极贯彻国家数字经济发展战略的时代精神;高效便捷管控的背后,是云端平台各大企业的互助共赢;高质精准2D、3D数据可视图的背后,是专注于数据可视化Web组态开发的厦门图扑软件科技有限公司。并对厦门图扑软件科技有限公司进
- 华为云赋能智能制造,助力图扑软件构造数字孪生场景
36Kr网
科技华为云制造bigdata
出行手机查看交通方案、物业管理的智能可视勘察管控、疫情地图提前预知危害……这些曾经存在于科幻片中的高科技场景一一在现代生活得到了应用与普及,其背后的数据可视化应用,正贯穿于当今大数据时代的各行各业,成为人们洞察数据内涵的有力工具,推动数字经济发展驶入“快车道”。数字经济发展的背后,是大数据时趋势下各地区积极贯彻国家数字经济发展战略的时代精神;高效便捷管控的背后,是云端平台各大企业的互助共赢;高质精
- 【Spark】查询优化中分区(Partitioning)和分桶(Bucketing)是什么关系?什么时候应当分区,什么时候应当分桶?
petrel2015
spark大数据分布式数据库
在学习Spark的过程中,分区和分桶乍一看很像,都能为了计算加速,但是仔细一想,一查还是有些差异的,甚至说差异很大。那么具体有什么差异点,有什么相同点。我做出了如下的整理,供大家参考,欢迎指正。相同点分区(Partitioning)和分桶(Bucketing)在很多方面具有相似性,它们都是用于优化大数据查询性能的技术数据划分的目的:优化查询性能分区和分桶的核心目标是通过将数据分割成更小的逻辑单元来
- 大数据技术实战---项目中遇到的问题及项目经验
一个“不专业”的阿凡
大数据
问题导读:1、项目中遇到过哪些问题?2、Kafka消息数据积压,Kafka消费能力不足怎么处理?3、Sqoop数据导出一致性问题?4、整体项目框架如何设计?项目中遇到过哪些问题7.1Hadoop宕机(1)如果MR造成系统宕机。此时要控制Yarn同时运行的任务数,和每个任务申请的最大内存。调整参数:yarn.scheduler.maximum-allocation-mb(单个任务可申请的最多物理内存
- Apache大数据旭哥优选大数据选题
Apache大数据旭
大数据定制选题javahadoopspark开发语言ideahive数据库架构
定制旭哥服务,一对一,无中介包安装+答疑+售后态度和技术都很重要定制按需求做要求不高就实惠一点定制需提前沟通好怎么做,这样才能避免不必要的麻烦python、flask、Django、mapreduce、mysqljava、springboot、vue、echarts、hadoop、spark、hive、hbase、flink、SparkStreaming、kafka、flume、sqoop分析+推
- Java后端开发技术详解
小二爱编程·
java开发语言
Java作为一门成熟的编程语言,已广泛应用于后端开发领域。其强大的生态系统和广泛的支持库使得Java成为许多企业和开发者的首选后端开发语言。随着云计算、微服务架构和大数据技术的兴起,Java后端开发的技术栈也不断演进。本文将详细介绍Java后端开发的核心技术,包括Java基础、常见框架、数据库操作、缓存技术、异步编程等。1.Java基础:理解面向对象的编程Java是一种面向对象的编程语言,面向对象
- IDC权威认证!永洪科技入选 IDC「GBI图谱」,点亮生成式 BI 价值灯塔
永洪科技
科技人工智能BI大数据数据分析
大数据市场正在稳步前进,生成式AI已成为厂商服务的重点方向,其发展离不开数据底座建设和数据工程管理,反过来AI也会帮助开发运维人员、业务人员和管理层更好地使用、查询数据。IDC调研数据显示,在生成式AI的驱动下,未来5年企业在数据管理和数据分析基础设施建设的投资增长率将分别达到8.7%和9.2%。近日,国际咨询机构IDC发布了《中国数据智能市场生态图谱V5.0》,在这一领域,永洪科技以其创新前沿的
- 打造金融数据新引擎,看永洪科技助力头部农信社搭建一站式分析平台
永洪科技
金融数据可视化BI数据分析大数据
在数字化转型的浪潮中,金融行业作为经济发展的核心引擎,正加速探索数字化、智能化的新路径。永洪科技,近日成功助力某省农村信用社联合社(简称:Z企业)完成了其数字化转型的重要一步,通过部署先进的商业智能解决方案,为Z企业的业务升级与效能提升注入了强劲动力。随着智能金融时代的来临,以大数据、人工智能、移动互联等新兴技术为核心的金融科技持续赋能银行金融业务数字化、智能化、开放化的发展,为金融机构营销体系的
- 读书笔记五 ---大数据之路--数仓分层
qq_38215991
bigdata大数据
数据分层在流式数据模型中,数据模型整体上分为五层。ODS层跟离线系统的定义一样,ODS层属于操作数据层,是直接从业务系统采集过来的最原始数据(进行了数据清洗),包含了所有业务的变更过程,数据粒度也是最细的。在这一层,实时和离线在源头上是统一的,这样的好处是用同一份数据加工出来的指标,口径基本是统一的,可以更方便进行实时和离线问数据比对。例如:原始的订单变更记录数据、服务器引擎的访同日志。(原始数据
- 使用LangGraph迁移MapReduceDocumentsChain进行长文档的摘要
dgay_hua
python
在大数据处理和文本分析领域,MapReduce是一种非常重要的策略,用于处理和分析大型数据集。具体到文本处理方面,MapReduceDocumentsChain구현了一种map-reduce策略,可以有效地处理长文本。本文将介绍如何从MapReduceDocumentsChain迁移到LangGraph,并探讨LangGraph在流处理、检查点恢复等方面的优势。技术背景介绍MapReduceDoc
- Python用Bokeh处理大规模数据可视化的最佳实践
一键难忘
Bokehpython开发语言
用Bokeh处理大规模数据可视化的最佳实践在大规模数据处理和分析中,数据可视化是一个至关重要的环节。Bokeh是一个在Python生态中广泛使用的交互式数据可视化库,它具有强大的可扩展性和灵活性。本文将介绍如何使用Bokeh处理大规模数据可视化,并提供一些最佳实践和代码实例,帮助你高效地展示大数据集中的重要信息。1.为什么选择Bokeh?Bokeh是一个专为浏览器呈现而设计的可视化库,它支持高效渲
- 分页优化之——游标分页
PhilipJ0303
Java面试java数据库优化游标分页分页查询
游标分页(Cursor-basedPagination)是一种高效的分页方式,特别适用于大数据集和无限滚动的场景。与传统的基于页码的分页(如page=1&size=10)不同,游标分页通过一个唯一的游标(通常是时间戳或唯一ID)来标记分页的位置,避免了传统分页在数据变动时的重复或遗漏问题。以下是游标分页在前后端的实现方式:1.游标分页的核心概念游标(Cursor):游标是一个唯一标识符,通常是数据
- 轻松入门Apache SeaTunnel:数据集成利器
窝窝和牛牛
SeaTunnelETL数据集成
文章目录轻松入门ApacheSeaTunnel:数据集成利器什么是SeaTunnel基本原理运行流程SeaTunnelvsDataX:两大数据集成工具对比实战场景:MySQL数据同步至ElasticsearchSeaTunnel实现方案DataX实现方案实现原理对比底层依赖环境方案优缺点分析快速上手环境准备简单示例总结轻松入门ApacheSeaTunnel:数据集成利器什么是SeaTunnelAp
- 探索数据安全新境界:Apache Spark SQL Ranger Security插件深度揭秘
乌昱有Melanie
探索数据安全新境界:ApacheSparkSQLRangerSecurity插件深度揭秘项目地址:https://gitcode.com/gh_mirrors/sp/spark-ranger随着大数据的爆炸性增长,数据安全性成为了企业不可忽视的核心议题。在这一背景下,【ApacheSparkSQLRangerSecurityPlugin】以其强大的数据访问控制能力脱颖而出,成为数据处理领域的明星级
- Java 大视界 -- Java 大数据在智能医疗远程会诊与专家协作中的技术支持(146)
青云交
大数据新视界Java大视界java大数据智能医疗远程会诊专家协作数据安全病例诊断
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Flink相关面试题
努力的搬砖人.
面试java后端flink
以下是150道ApacheFlink面试题及其详细回答,涵盖了Flink的基础知识、核心架构、API使用、性能调优等多个方面,每道题目都尽量详细且简单易懂:Flink基础概念类1.什么是ApacheFlink?ApacheFlink是一个开源的流处理和批处理框架,能够实现快速、可靠、可扩展的大数据处理。它既可以处理无界的数据流,也可以处理有界的数据批,提供了低延迟和高吞吐量的实时数据处理能力。Fl
- 2017安全之势:云、大数据、IoT、人工智能
weixin_34392906
人工智能大数据嵌入式
“新技术让信息系统变成了孙悟空,开始无所不能,但安全仍是它的‘紧箍咒’!怎样解开这个‘紧箍咒’?各路安全厂商各显其能,但似乎路漫漫兮离目标还很遥远。”三未信安董事长张岳公在ZD至顶网《百位意见领袖寄语2017》中说出了这样一句话,我觉着很有道理。安全是一个永恒的话题,如果说它与新的信息技术相生相克也不过分。即便如此,我们更要尽可能的减少安全带来的束缚。2017已经到来,不妨来看看至顶网与业界大咖总
- 直方图梯度提升:大数据时代的极速决策引擎
万事可爱^
大数据机器学习深度学习直方图梯度提升GBDT算法
一、为什么需要直方图梯度提升?在Kaggle竞赛的冠军解决方案中,超过70%的获奖方案都使用了梯度提升算法。但当数据量突破百万级时,传统梯度提升树(GBDT)面临三大致命瓶颈:训练耗时剧增:每个特征的分割点计算都需要全量数据排序内存消耗爆炸:存储排序后的特征值需要额外空间处理效率低下:无法有效利用现代CPU的多核特性而梯度提升决策树(GBDT)作为集成学习的代表算法,通过迭代构建决策树实现预测能力
- 从原理到实践:Go 语言内存优化策略深度解析
叶间清风1998
服务器linux网络
目录一、引言二、Go语言内存管理基础原理2.1栈与堆内存分配2.2垃圾回收机制剖析三、内存优化策略与实践3.1合理使用指针传递3.2避免不必要的内存分配3.3优化切片与映射的使用3.4控制变量作用域3.5减少闭包导致的变量逃逸四、内存优化工具与性能分析4.1pprof工具的使用4.2其他性能分析辅助手段五、不同场景下的内存优化案例分析5.1高并发Web服务场景5.2大数据处理与分析场景六、总结与展
- 硅谷企业的大数据平台架构什么样?看看Twitter、Airbnb、Uber的实践
大数据v
分布式数据库大数据编程语言hadoop
导读:本文分析一下典型硅谷互联网企业的大数据平台架构。作者:彭锋宋文欣孙浩峰来源:大数据DT(ID:hzdashuju)01Twitter的大数据平台架构Twitter是最早一批推进数字化运营的硅谷企业之一,其公司运营和产品迭代的很多功能是由其底层的大数据平台提供的。图7-2所示为Twitter大数据平台的基本示意图。▲图7-2Twitter大数据平台架构Twitter的大数据平台开发比较早,很多
- 【图像预处理】
瞬间记忆
深度学习python
(4条消息)图像预处理方法总结_AI强仔的博客-CSDN博客对图像进行预处理的一些常见方法包括:调整图像大小和分辨率,以便适应模型的输入要求。对图像进行裁剪或填充,以使其大小和比例符合要求。调整图像的亮度、对比度和饱和度等图像属性。进行图像平滑或锐化操作,以去除噪声或增强图像特征。进行图像归一化或标准化,以确保各个特征在相同的尺度上。应用数据增强技术,如旋转、平移、缩放、翻转等,以扩大数据集,提高
- 大数据学习(75)-大数据组件总结
viperrrrrrr
大数据impalayarnhdfshiveCDHmapreduce
大数据学习系列专栏:哲学语录:用力所能及,改变世界。如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦一、CDHCDH(ClouderaDistributionIncludingApacheHadoop)是由Cloudera公司提供的一个集成了ApacheHadoop以及相关生态系统的发行版本。CDH是一个大数据平台,简化和加速了大数据处理分析的部署和管理。CDH提供Hadoop的
- 大数据点燃智能制造变革之火——从数据到价值的跃迁
Echo_Wish
大数据高阶实战秘籍大数据制造
大数据点燃智能制造变革之火——从数据到价值的跃迁在全球制造业向智能化转型的浪潮中,大数据已然成为点燃变革的关键火种。从车间到供应链,从设备到产品生命周期,制造业正通过大数据分析找到隐形的效率优化机会,打破传统生产模式的桎梏。作为Echo_Wish,今天我将和大家探讨大数据如何融入智能制造,助力实现生产效率和业务价值的双重飞跃。一、智能制造的核心诉求:数据驱动的决策与执行智能制造的目标是通过数据驱动
- Sqoop安装部署
愿与狸花过一生
大数据sqoophadoophive
ApacheSqoop简介Sqoop(SQL-to-Hadoop)是Apache开源项目,主要用于:将关系型数据库中的数据导入Hadoop分布式文件系统(HDFS)或相关组件(如Hive、HBase)。将Hadoop处理后的数据导出回关系型数据库。核心特性批量数据传输支持从数据库表到HDFS/Hive的全量或增量数据迁移。并行化处理基于MapReduce实现并行导入导出,提升大数据量场景的效率。自
- AI预测体彩排3新模型百十个定位预测+胆码预测+杀和尾+杀和值2025年3月21日第25弹
GIS小天
体彩排3人工智能机器学习彩票算法
前面由于工作原因停更了很长时间,停更期间很多彩友一直私信我何时恢复发布每日预测,目前手头上的项目已经基本收尾,接下来恢复发布。当然,也有很多朋友一直咨询3D超级助手开发的进度,在这里统一回复下。由于本人既精通编程+大数据分析,也热衷于彩票研究,所以很多彩友通过一些渠道找到了我。目前,加我的已有不少彩友,分成了3类人群:第一类:平时不懂数据分析,买彩全靠瞎猜乱蒙,这些朋友希望借助我的技术和方法来给他
- Zynq PL端IP核之AXI DMA
Mazy.v
fpga开发嵌入式硬件arm开发单片机
1.AXIDMA简介Zynq提供了两种DMA,一种是PS中的DMA控制器,通过GP口与PL端连接,另一种是PL中的AXIDMAIP核(软核),通过HP口与PS端连接。Zynq有4个HP接口,每一个HP接口都包含控制和数据FIFO,这些FIFO为大数据量突发传输提供缓冲,让HP接口成为理想的高速数据传输接口。AXIDMAIP内核在AXI4内存映射和AXI4StreamIP接口之间提供高带宽直接储存访
- 揭秘时空大数据:详细介绍、真实应用场景和数据示例解析
陈书予
GIS开发(时空大数据)前端大数据python时序数据库
时空大数据(SpatialBigData)是指利用空间环境和时间环境信息,以及数字技术,从多种来源获取的海量、动态的、多维的数据,对空间环境和时间环境进行实时监测,并基于复杂的数据分析和挖掘,获取有价值的信息。时空大数据示例:1)社会网络数据:Twitter、Facebook、Instagram等社交媒体上的海量数据,可以通过时间、空间、主题等来提取有价值的信息。2)遥感图像数据:通过遥感技术从卫
- python基于Django的旅游景点数据分析及可视化的设计与实现 7blk7
qq2295116502
pythondjango数据分析
目录项目介绍技术栈具体实现截图Scrapy爬虫框架关键技术和使用的工具环境等的说明解决的思路开发流程爬虫核心代码展示系统设计论文书写大纲详细视频演示源码获取项目介绍大数据分析是现下比较热门的词汇,通过分析之后可以得到更多深入且有价值的信息。现实的科技手段中,越来越多的应用都会涉及到大数据随着大数据时代的到来,数据挖掘、分析与应用成为多个行业的关键,本课题首先介绍了网络爬虫的基本概念以及技术实现方法
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分