libevent学习笔记【使用篇】——(零)异步IO简介

本文翻译自:http://www.wangafu.net/~nickm/libevent-book/01_intro.html

异步IO简介

  大多数的初级编程者都是从阻塞IO调用开始网络编程的。阻塞(同步)IO调用指的是:调用会一直阻塞,不会返回,直到发生下面两种情况之一: 要么操作完成;要么经历相当长的时间,网络协议栈自己放弃。
  比如,当在TCP连接上调用connect时,操作系统会发送SYN包到TCP的远端主机。connect会一直阻塞而不返回,直到它接收到了远端主机发来的SYN+ACK包,或者经历太长的时间而自己放弃。
  下面是一个简单的使用阻塞网络调用的客户端例子。它链接google,发送简单的HTTP请求,然后将响应输出到stdout。
Example:A simple blocking HTTP client:

/* For  sockaddr_in */
#include  
/* For socket functions */
#include 
/* For gethostbyname */
#include 

#include 
#include 
#include 

int main(int c,char **v)
{
   const char query[] =
        "GET / HTTP/1.0\r\n"
        "Host: www.google.com\r\n"
        "\r\n";
   const char hostname[] = "www.google.com";
   struct sockaddr_in sin;
   struct hostent *h;
   const char *cp;
   int fd;
    ssize_t n_written, remaining;
   char buf[1024];

    /* Look up the IP address for the hostname.   Watch out; this isn't
       threadsafe on most platforms. */
    h = gethostbyname(hostname);
   if (!h) {
        fprintf(stderr, "Couldn't lookup%s: %s", hostname, hstrerror(h_errno));
       return 1;
    }
   if (h->h_addrtype != AF_INET) {
        fprintf(stderr, "No ipv6 support,sorry.");
       return 1;
    }

    /* Allocate a new socket */
    fd = socket(AF_INET, SOCK_STREAM, 0);
   if (fd < 0) {
        perror("socket");
       return 1;
    }

    /* Connect to the remote host. */
    sin.sin_family = AF_INET;
    sin.sin_port = htons(80);
    sin.sin_addr = *(struct in_addr*)h->h_addr;
   if (connect(fd, (struct sockaddr*) &sin, sizeof(sin))) {
        perror("connect");
        close(fd);
       return 1;
    }

    /* Write the query. */
    /* XXX Can send succeed partially? */
    cp = query;
    remaining = strlen(query);
   while (remaining) {
      n_written = send(fd, cp, remaining, 0);
     if (n_written <= 0) {
        perror("send");
       return 1;
      }
      remaining -= n_written;
      cp += n_written;
    }

    /* Get an answer back. */
   while (1) {
        ssize_t result = recv(fd, buf,sizeof(buf), 0);
       if (result == 0) {
           break;
        }elseif (result < 0) {
            perror("recv");
            close(fd);
           return 1;
        }
        fwrite(buf, 1, result, stdout);
    }

    close(fd);
   return 0;
}

  上面例子中,所有的网络调用都是阻塞的:`gethostbyname`直到成功或失败的解析了`www.google.com`才会返回;`connect`直到TCP建链成功了才会返回;`recv`直到收到数据时才会返回;`send`直到将输出flushed到内核的写缓冲区之后才会返回。
  当然,阻塞IO并不总是无用的。如果应用程序在同一时刻不需要做其他事,那么阻塞IO同样会很好的工作。 

  但是,如果你要编写一个需要同时处理多个连接的程序,比如需要从两个连接中读取数据,而且不知道那个连接会先收到数据,那么下面就是一个不好的例子:
BadExample

/* This  won't work. */
charbuf[1024];
int i, n;
while(i_still_want_to_read()) {
    for (i=0; isizeof(buf), 0);
        if (n==0)
            handle_close(fd[i]);
        else if (n<0)
            handle_error(fd[i], errno);
        else
            handle_input(fd[i], buf, n);
    }
}

  如果fd[2]上首先有数据到来,但是上面的代码只有在fd[0]和fd[1]上接收到数据之后,才能去处理fd[2]上的数据。

  有时,可以通过多线程(进程)来处理这样的问题。一个最简单的方式就是每个链接用一个线程(进程)进行处理。这样每个链接都会有自己的线程(进程)处理,一个链接上的阻塞IO调用就不会影响到其他链接上的处理。
  下面就是一个例子:在TCP的40713端口上进行监听的ROT13服务器,每次从输入中接收一行数据,经过简单的处理后进行输出。它使用fork产生新的进程来处理每个链接。
Example:Forking ROT13 server

/* For sockaddr_in */
#include  
/* For socket functions */
#include 

#include 
#include 
#include 
#include 

#define MAX_LINE 16384

char rot13_char(char c)
{
    if ((c >= 'a' && c <= 'm') ||(c >= 'A' && c <= 'M'))
        return c + 13;
    else if ((c >= 'n' && c <='z') || (c >= 'N' && c <= 'Z'))
        return c - 13;
    else
        return c;
}

void child(int fd)
{
    char outbuf[MAX_LINE+1];
    size_t outbuf_used = 0;
    ssize_t result;

    while (1) 
    {
        char ch;
        result = recv(fd, &ch, 1, 0);
        if (result == 0) {
            break;
        } else if (result == -1) {
            perror("read");
            break;
        }

        /* We do this test to keep the userfrom overflowing the buffer. */
        if (outbuf_used < sizeof(outbuf)) {
            outbuf[outbuf_used++] = rot13_char(ch);
        }

        if (ch == '\n') {
            send(fd, outbuf, outbuf_used, 0);
            outbuf_used = 0;
            continue;
        }
    }
}

void run(void)
{
    int listener;
    struct sockaddr_in sin;

    sin.sin_family = AF_INET;
    sin.sin_addr.s_addr = 0;
    sin.sin_port = htons(40713);

    listener = socket(AF_INET, SOCK_STREAM, 0);

#ifndef WIN32
    {
        int one = 1;
        setsockopt(listener, SOL_SOCKET,SO_REUSEADDR, &one, sizeof(one));
    }
#endif

    if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) {
        perror("bind");
        return;
    }

    if (listen(listener, 16)<0) {
        perror("listen");
        return;
    }



    while (1) {
        struct sockaddr_storage ss;
        socklen_t slen = sizeof(ss);
        int fd = accept(listener, (struct sockaddr*)&ss, &slen);
        if (fd < 0) {
            perror("accept");
        } else {
            if (fork() == 0) {
                child(fd);
                exit(0);
            }
        }
    }
}

int main(int c, char **v)
{
    run();
    return 0;
}

  这样,是否已经完美解决了同一时刻多连接的问题了呢?事实并非如此:
  第一,某些平台上,创建新进程(甚至是线程)是十分昂贵的。当然在实际环境中,可以使用线程池,而不是每次都创建新线程。
  第二,更重要的是,线程无法如你所愿的规模化使用。如果你的程序需要同时处理成千上万个链接的时候,处理成千上万个线程就不是那么高效的了。

  如果线程不是处理多连接的答案,那什么才是呢?

  在unix系统上,将socket设置为非阻塞:`fcntl(fd, F_SETFL, O_NONBLOCK)`。一旦将fd置为非阻塞,那么从此刻起,无论何时进行网络调用,该调用会立即返回,要么完成操作,返回成功,要么就是返回一个特定的错误码指出“当前无法完成任务,再试一次”。所以,上面2个链接的例子可以如下写:
BadExample: busy-polling all sockets

/* This will work, but the performance will beunforgivably bad. */
int i, n;
char buf[1024];
for (i=0;i < n_sockets; ++i)
    fcntl(fd[i], F_SETFL, O_NONBLOCK);

while(i_still_want_to_read()) {
    for (i=0; i < n_sockets; ++i) {
        n = recv(fd[i], buf, sizeof(buf), 0);
        if (n == 0) {
            handle_close(fd[i]);
        }else if (n < 0) {
            if (errno == EAGAIN)
                 ; /* The kernel didn't haveany data for us to read. */
            else
                 handle_error(fd[i], errno);
         } else {
            handle_input(fd[i], buf, n);
         }
    }
}

  上面就是使用非阻塞sockets的例子,它虽然可以工作,但是效率却很差,两个原因:第一,当每个链接都没有数据可读的时候,就会无限的轮训下去,用尽所有的CPU周期。第二,如果需要处理多个链接,那么不管是否有数据可读,每个链接都会进行一次内核调用。

  所以,我们需要一种方法,可以告诉内核“一直等待,直到某个socket已经有准备好了,而且要告诉我那个socket准备好了”。
  古老的解决方法是使用select,目前仍在使用。select使用三个socket fd集合(位数组):可读、可写和异常。它会一直等待,直到集合中的某一个socket已经准备好了,而且,select返回时,会更改集合,使其只包含那些已经准备好了的socket fd。使用select的例子如下:
Example:Using select

/* If youonly have a couple dozen fds, this version won't be awful */
fd_setreadset;
int i, n;
charbuf[1024];

while (i_still_want_to_read()){
    int maxfd = -1;
    FD_ZERO(&readset);

    /* Add all of the interesting fds toreadset */
    for (i=0; i < n_sockets; ++i) {
         if (fd[i]>maxfd) maxfd = fd[i];
         FD_SET(fd[i], &readset);
    }

    /*Wait until one or more fds are ready to read */
    select(maxfd+1, &readset, NULL, NULL,NULL);

    /* Process all of the fds that are stillset in readset */
    for (i=0; i < n_sockets; ++i) {
        if (FD_ISSET(fd[i], &readset)) {
            n = recv(fd[i], buf, sizeof(buf),0);
            if (n == 0) {
                handle_close(fd[i]);
            } else if (n < 0) {
                if (errno == EAGAIN)
                     ; /* The kernel didn'thave any data for us to read. */
                else
                     handle_error(fd[i],errno);
             } else {
                handle_input(fd[i], buf, n);
             }
        }
    }
}

一个完整的使用select的ROT13的服务器例子如下:

/* Forsockaddr_in */
#include
/* For socketfunctions */
#include
/* Forfcntl */
#include
/* forselect */
#include

#include
#include
#include
#include
#include
#include

#defineMAX_LINE 16384

char rot13_char(charc)
{
    /* We don't want to use isalpha here;setting the locale would change
     * which characters are consideredalphabetical. */
    if ((c >= 'a' && c <= 'm') ||(c >= 'A' && c <= 'M'))
        return c + 13;
    else if ((c >= 'n' && c <='z') || (c >= 'N' && c <= 'Z'))
        return c - 13;
    else
        return c;
}

structfd_state {
    char buffer[MAX_LINE];
    size_t buffer_used;

    int writing;
    size_t n_written;
    size_t write_upto;
};

structfd_state * alloc_fd_state(void)
{
    struct fd_state *state =malloc(sizeof(struct fd_state));
    if (!state)
        return NULL;
    state->buffer_used = state->n_written= state->writing =
        state->write_upto = 0;
    return state;
}

void free_fd_state(structfd_state *state)
{
    free(state);
}

void make_nonblocking(intfd)
{
    fcntl(fd, F_SETFL, O_NONBLOCK);
}

int do_read(intfd, struct fd_state *state)
{
    char buf[1024];
    int i;
    ssize_t result;
    while (1) {
        result = recv(fd, buf, sizeof(buf), 0);
        if (result <= 0)
            break;

        for (i=0; i < result; ++i)  {
            if (state->buffer_used state->buffer))
               state->buffer[state->buffer_used++] = rot13_char(buf[i]);
            if (buf[i] == '\n') {
                state->writing = 1;
                state->write_upto =state->buffer_used;
            }
        }
    }

    if (result == 0) {
        return 1;
    } else if (result < 0) {
        if (errno == EAGAIN)
            return 0;
        return -1;
    }

    return 0;
}

int do_write(intfd, struct fd_state *state)
{
    while (state->n_written <state->write_upto) {
        ssize_t result = send(fd,state->buffer + state->n_written,
                             state->write_upto - state->n_written, 0);
        if (result < 0) {
            if (errno == EAGAIN)
                return 0;
            return -1;
        }
        assert(result != 0);

        state->n_written += result;
    }

    if (state->n_written ==state->buffer_used)
        state->n_written =state->write_upto = state->buffer_used = 0;

    state->writing = 0;

    return 0;
}

void run(void)
{
    int listener;
    struct fd_state *state[FD_SETSIZE];
    struct sockaddr_in sin;
    int i, maxfd;
    fd_set readset, writeset, exset;

    sin.sin_family = AF_INET;
    sin.sin_addr.s_addr = 0;
    sin.sin_port = htons(40713);

    for (i = 0; i < FD_SETSIZE; ++i)
        state[i] = NULL;

    listener = socket(AF_INET, SOCK_STREAM, 0);
    make_nonblocking(listener);

#ifndefWIN32
    {
        int one = 1;
        setsockopt(listener, SOL_SOCKET,SO_REUSEADDR, &one, sizeof(one));
    }
#endif

    if (bind(listener, (structsockaddr*)&sin, sizeof(sin)) < 0) {
        perror("bind");
        return;
    }

    if (listen(listener, 16)<0) {
        perror("listen");
        return;
    }

    FD_ZERO(&readset);
    FD_ZERO(&writeset);
    FD_ZERO(&exset);

    while (1) {
        maxfd = listener;

        FD_ZERO(&readset);
        FD_ZERO(&writeset);
        FD_ZERO(&exset);

        FD_SET(listener, &readset);

        for (i=0; i < FD_SETSIZE; ++i) {
            if (state[i]) {
                if (i > maxfd)
                    maxfd = i;
                FD_SET(i, &readset);
                if (state[i]->writing) {
                    FD_SET(i, &writeset);
                }
            }
        }

        if (select(maxfd+1, &readset,&writeset, &exset, NULL) < 0) {
            perror("select");
            return;
        }

        if (FD_ISSET(listener, &readset)) {
            struct sockaddr_storage ss;
            socklen_t slen = sizeof(ss);
            int fd = accept(listener, (structsockaddr*)&ss, &slen);
           if (fd < 0) {
                perror("accept");
            } else if (fd > FD_SETSIZE) {
                close(fd);
            } else {
                make_nonblocking(fd);
                state[fd] = alloc_fd_state();
                assert(state[fd]);/*XXX*/
            }
        }

        for (i=0; i < maxfd+1; ++i) {
            int r = 0;
            if (i == listener)
                continue;

            if (FD_ISSET(i, &readset)) {
                r = do_read(i, state[i]);
            }
            if (r == 0 && FD_ISSET(i,&writeset)) {
                r = do_write(i, state[i]);
            }
            if (r) {
                free_fd_state(state[i]);
                state[i] = NULL;
                close(i);
            }
        }
    }
}

int main(intc, char **v)
{
    setvbuf(stdout, NULL, _IONBF, 0);

    run();
    return 0;
}

  但是问题还没有解决。因为产生和读取select的位数组耗费的时间与最大的socket fd数成正比,所以当socket fd数变得很大时,select调用的性能就会下降很多。

  不同的操作系统都提供了不同的select替代函数。包括poll,epoll,kqueue, evports/dev/poll。所有这些接口都具有比select更好的性能,而且除了poll之外,他们在增加socket,删除socket,通知哪个socket准备好这些方面,都可以达到O(1)的性能。

  不幸的是,所有这些不同的接口都没有形成标准。linux提供了epoll,BSDs提供了kqueue,Solaris提供了evports/dev/poll,而且这些操作系统提供的接口相互独立。所以,当你需要编写一个可移植的、高性能异步应用时,你需要一个封装所有这些接口的抽象,而且提供那个最高效的接口。
这就是libeventAPI能提供的最底层的功能。它提供了一系列的select替代接口,并且使用当前操作系统所具有的,最高效的版本。
下面是另一个ROT13服务器的例子。该实例使用libevent2替代select。去除了fd_sets,而是使用event_base添加和删除事件,当然这是通过pollepollkqueue等来实现的。
Example:A low-level ROT13 server with Libevent

/* Forsockaddr_in */
#include
/* Forsocket functions */
#include
/* Forfcntl */
#include

#include

#include
#include
#include
#include
#include
#include

#define MAX_LINE16384

voiddo_read(evutil_socket_t fd, short events, void *arg);
voiddo_write(evutil_socket_t fd, short events, void *arg);

char
rot13_char(charc)
{
    /* We don't want to use isalpha here;setting the locale would change
     * which characters are consideredalphabetical. */
    if ((c >= 'a' && c <= 'm') ||(c >= 'A' && c <= 'M'))
        return c + 13;
    else if ((c >= 'n' && c <='z') || (c >= 'N' && c <= 'Z'))
        return c - 13;
    else
        return c;
}

structfd_state {
    char buffer[MAX_LINE];
    size_t buffer_used;

    size_t n_written;
    size_t write_upto;

    struct event *read_event;
    struct event *write_event;
};

structfd_state * alloc_fd_state(struct event_base *base, evutil_socket_t fd)
{
    struct fd_state *state =malloc(sizeof(struct fd_state));
    if (!state)
        return NULL;
    state->read_event = event_new(base, fd,EV_READ|EV_PERSIST, do_read, state);
    if (!state->read_event) {
        free(state);
        return NULL;
    }
    state->write_event = event_new(base, fd,EV_WRITE|EV_PERSIST, do_write, state);

    if (!state->write_event) {
        event_free(state->read_event);
        free(state);
        return NULL;
    }

    state->buffer_used = state->n_written= state->write_upto = 0;

    assert(state->write_event);
    return state;
}

void free_fd_state(structfd_state *state)
{
    event_free(state->read_event);
    event_free(state->write_event);
    free(state);
}

void do_read(evutil_socket_tfd, short events, void *arg)
{
    struct fd_state *state = arg;
    char buf[1024];
    int i;
    ssize_t result;
    while (1) {
        assert(state->write_event);
        result = recv(fd, buf, sizeof(buf), 0);
        if (result <= 0)
            break;

        for (i=0; i < result; ++i)  {
            if (state->buffer_used state->buffer))
               state->buffer[state->buffer_used++] = rot13_char(buf[i]);
            if (buf[i] == '\n') {
                assert(state->write_event);
                event_add(state->write_event,NULL);
                state->write_upto =state->buffer_used;
            }
        }
    }

    if (result == 0) {
        free_fd_state(state);
    } else if (result < 0) {
        if (errno == EAGAIN) // XXXX use evutilmacro
            return;
        perror("recv");
        free_fd_state(state);
    }
}

void do_write(evutil_socket_tfd, short events, void *arg)
{
    struct fd_state *state = arg;

    while (state->n_written <state->write_upto) {
        ssize_t result = send(fd,state->buffer + state->n_written,
                             state->write_upto - state->n_written, 0);
        if (result < 0) {
            if (errno == EAGAIN) // XXX useevutil macro
                return;
            free_fd_state(state);
            return;
        }
        assert(result != 0);

        state->n_written += result;
    }

    if (state->n_written ==state->buffer_used)
        state->n_written =state->write_upto = state->buffer_used = 1;

    event_del(state->write_event);
}

void do_accept(evutil_socket_tlistener, short event, void *arg)
{
    struct event_base *base = arg;
    struct sockaddr_storage ss;
    socklen_t slen = sizeof(ss);
    int fd = accept(listener, (structsockaddr*)&ss, &slen);
    if (fd < 0) { // XXXX eagain??
        perror("accept");
    } else if (fd > FD_SETSIZE) {
        close(fd); // XXX replace all closeswith EVUTIL_CLOSESOCKET */
    } else {
        struct fd_state *state;
        evutil_make_socket_nonblocking(fd);
        state = alloc_fd_state(base, fd);
        assert(state); /*XXX err*/
        assert(state->write_event);
        event_add(state->read_event, NULL);
    }
}

void run(void)
{
    evutil_socket_t listener;
    struct sockaddr_in sin;
    struct event_base *base;
    struct event *listener_event;

    base = event_base_new();
    if (!base)
        return; /*XXXerr*/

    sin.sin_family = AF_INET;
    sin.sin_addr.s_addr = 0;
    sin.sin_port = htons(40713);

    listener = socket(AF_INET, SOCK_STREAM, 0);
    evutil_make_socket_nonblocking(listener);

#ifndefWIN32
    {
        int one = 1;
        setsockopt(listener, SOL_SOCKET,SO_REUSEADDR, &one, sizeof(one));
    }
#endif

    if (bind(listener, (structsockaddr*)&sin, sizeof(sin)) < 0) {
        perror("bind");
        return;
    }

    if (listen(listener, 16)<0) {
        perror("listen");
        return;
    }

    listener_event = event_new(base, listener,EV_READ|EV_PERSIST, do_accept, (void*)base);
    /*XXX check it */
    event_add(listener_event, NULL);

    event_base_dispatch(base);
}

int main(intc, char **v)
{
    setvbuf(stdout, NULL, _IONBF, 0);

    run();
    return 0;
}

  (上面的代码需要注意的是,使用evutil_socket_t,而不是int作为socket的类型;使用evutil_make_socket_nonblocking而不是fcntl(O_NONBLOCK),将socket转为非阻塞。这些改变使得我们的代码可以兼容win32平台下的网络API。)

更方便并且兼容windows

  我们的代码虽然更加高效了,但是也变得更加复杂了。回到我们使用fork的例子,我们没有为每个链接都管理一个缓存,我们只是在每个进程上使用了独立的栈缓存。实际上,我们无需明确的跟踪哪个socket在读或写,在代码中它是隐含的。我们也无需一个跟踪多少操作已经完成的结构体,我们可以仅仅使用循环和栈变量即可。
  另外,如果你对windows上的网络编程很熟悉,则可以看出,使用libevent的上面的例子没有达到最佳的性能。在Windows上,高效的异步IO与并不是类似于select那样的机制,而是使用IOCP(IO Completion Ports)API。与其他高效网络API不同的是,IOCP并不通知你的程序哪个socket已经准备好操作了,相反的,程序告诉windows网络栈开始一个网络操作,而IOCP告诉程序操作已经完成了。

  幸运的是,libevent2bufferevents接口可以解决上面的问题:它使得程序编写更加简单,而且可以在windows上、unix上都提供最高效的接口。下面是最后一个ROT13服务器的例子,它使用了bufferevents API
 
Example:A simpler ROT13 server with Libevent

/* Forsockaddr_in */
#include
/* Forsocket functions */
#include
/* Forfcntl */
#include

#include
#include
#include

#include
#include
#include
#include
#include
#include

#defineMAX_LINE 16384

void do_read(evutil_socket_tfd, short events, void *arg);
voiddo_write(evutil_socket_t fd, short events, void *arg);

char  rot13_char(char c)
{
    /* We don't want to use isalpha here;setting the locale would change
     * which characters are consideredalphabetical. */
    if ((c >= 'a' && c <= 'm') ||(c >= 'A' && c <= 'M'))
        return c + 13;
    else if ((c >= 'n' && c <='z') || (c >= 'N' && c <= 'Z'))
        return c - 13;
    else
        return c;
}

void  readcb(struct bufferevent *bev, void *ctx)
{
    struct evbuffer *input, *output;
    char *line;
    size_t n;
    int i;
    input = bufferevent_get_input(bev);
    output = bufferevent_get_output(bev);

    while ((line = evbuffer_readln(input, &n,EVBUFFER_EOL_LF))) {
        for (i = 0; i < n; ++i)
            line[i] = rot13_char(line[i]);
        evbuffer_add(output, line, n);
        evbuffer_add(output, "\n",1);
        free(line);
    }

    if (evbuffer_get_length(input) >=MAX_LINE) {
        /* Too long; just process what there isand go on so that the buffer
         * doesn't grow infinitely long. */
        char buf[1024];
        while (evbuffer_get_length(input)) {
            int n = evbuffer_remove(input, buf,sizeof(buf));
            for (i = 0; i < n; ++i)
                buf[i] = rot13_char(buf[i]);
            evbuffer_add(output, buf, n);
        }
        evbuffer_add(output, "\n",1);
    }
}

void  errorcb(struct bufferevent *bev, short error,void *ctx)
{
    if (error & BEV_EVENT_EOF) {
        /* connection has been closed, do anyclean up here */
        /* ... */
    } else if (error & BEV_EVENT_ERROR) {
        /* check errno to see what erroroccurred */
        /* ... */
    } else if (error & BEV_EVENT_TIMEOUT) {
        /* must be a timeout event handle,handle it */
        /* ... */
    }
    bufferevent_free(bev);
}

void  do_accept(evutil_socket_t listener, shortevent, void *arg)
{
    struct event_base *base = arg;
    struct sockaddr_storage ss;
    socklen_t slen = sizeof(ss);
    int fd = accept(listener, (structsockaddr*)&ss, &slen);
    if (fd < 0) {
        perror("accept");
    } else if (fd > FD_SETSIZE) {
        close(fd);
    } else {
        struct bufferevent *bev;
        evutil_make_socket_nonblocking(fd);
        bev = bufferevent_socket_new(base, fd,BEV_OPT_CLOSE_ON_FREE);
        bufferevent_setcb(bev, readcb, NULL,errorcb, NULL);
        bufferevent_setwatermark(bev, EV_READ,0, MAX_LINE);
        bufferevent_enable(bev,EV_READ|EV_WRITE);
    }
}

void run(void)
{
    evutil_socket_t listener;
    struct sockaddr_in sin;
    struct event_base *base;
    struct event *listener_event;

    base = event_base_new();
    if (!base)
        return; /*XXXerr*/

    sin.sin_family = AF_INET;
    sin.sin_addr.s_addr = 0;
    sin.sin_port = htons(40713);

    listener = socket(AF_INET, SOCK_STREAM, 0);
    evutil_make_socket_nonblocking(listener);

#ifndefWIN32
    {
        int one = 1;
        setsockopt(listener, SOL_SOCKET,SO_REUSEADDR, &one, sizeof(one));
    }
#endif

    if (bind(listener, (structsockaddr*)&sin, sizeof(sin)) < 0) {
        perror("bind");
        return;
    }

    if (listen(listener, 16)<0) {
        perror("listen");
        return;
    }

    listener_event = event_new(base, listener,EV_READ|EV_PERSIST, do_accept, (void*)base);
    /*XXX check it */
    event_add(listener_event, NULL);

    event_base_dispatch(base);
}

int main(intc, char **v)
{
    setvbuf(stdout, NULL, _IONBF, 0);

    run();
    return 0;
}

你可能感兴趣的:(开源项目)