- 租户订阅、套餐切换与服务启停全流程设计:SaaS 计费引擎与运营控制体系实战解析
观熵
企业级SaaS架构与工程实战全流程SaaS架构
租户订阅、套餐切换与服务启停全流程设计:SaaS计费引擎与运营控制体系实战解析关键词多租户订阅系统、SaaS套餐管理、服务启停机制、计费周期控制、套餐额度配置、权限策略切换、租户状态机、运营控制后台、资源配额调节、合约期与续订策略摘要在企业级SaaS系统中,租户订阅与套餐管理机制不仅决定平台的盈利模型,更直接关系到权限控制、资源分配、服务启停等系统级行为。传统CRM或权限表驱动的权限体系难以支撑“
- SaaS 的订阅计费模型设计实战指南:按量、按用户、按功能的架构与实现全解析
SaaS的订阅计费模型设计实战指南:按量、按用户、按功能的架构与实现全解析关键词SaaS计费模型、按量计费、用户数计费、功能模块计费、订阅管理、计费系统架构、账单系统、分级定价、后付费、使用量追踪摘要在企业级SaaS系统架构中,计费模型不仅关系到产品商业化路径的可行性,还直接决定了系统架构、数据采集与账务合规的设计逻辑。本文将深入解析三种主流SaaS订阅计费模式:按量计费(Usage-based)
- Midjourney:AI人工智能图像生成的新方向
AI智能探索者
人工智能midjourney计算机视觉ai
Midjourney:AI人工智能图像生成的新方向关键词:Midjourney、AI图像生成、扩散模型、提示词工程、多模态学习、生成式AI、创意工具摘要:本文将带您走进AI图像生成的前沿领域,以Midjourney为核心,从技术原理到实际应用,用通俗易懂的语言解析其背后的“魔法”。我们将通过生活案例、技术拆解和实战演示,揭示Midjourney如何通过扩散模型、提示词工程和多模态学习,重新定义“用
- 【pytorch】——Could not export Python function call ‘Scatter‘
pytorch用pytorch的trace导出模型的时候,报错errorRuntimeError:CouldnotexportPythonfunctioncall'Scatter'.RemovecallstoPythonfunctionsbeforeexport.Didyouforgettoadd@scriptor@script_methodannotation?Ifthisisann.Modul
- 还不懂 OOM ?详解内存溢出与内存泄漏区别!
不决问春风
JVMjava
内存溢出与内存泄漏1.内存溢出(OutOfMemory,OOM)概念:内存溢出是指程序在运行过程中,尝试申请的内存超过了系统所能提供的最大内存限制,并且垃圾收集器也无法提供更多的内存,导致程序无法正常运行。原因:程序分配的内存过大:处理超大文件、加载大量数据等操作,可能会导致内存需求超过系统限制。比如你申请了一个Integer的变量,但是给了它一个Long类型才能存下的数,那就是内存溢出内存泄漏:
- 基于评估方法论评估一个大模型的准确度
尤物程序猿
自动化运维
评估标准先来说说什么是大模型的一个准确度,指其输出结果与真实值或期望值之间的符合程度,但在不同任务和场景下具体定义和评估方式存在显著差异。要评估一个大模型还得考虑到评估哪些方面呢?以下是大概的几个方向任务类型准确度定义分类任务预测类别与真实标签的一致性生成任务生成内容的真实性/流畅性/相关性问答任务答案的事实正确性和完整性多模态任务跨模态对齐能力(如图文匹配)除了以上几个方面还需要考虑表面匹配:字
- 物联网零售领域AI算力网络与通信的应用探索
AI算力网络与通信
物联网零售人工智能ai
物联网零售领域AI算力网络与通信的应用探索关键词:物联网、零售领域、AI算力网络、通信、应用探索摘要:本文聚焦于物联网零售领域,深入探讨了AI算力网络与通信的应用。首先介绍了相关背景,包括目的、预期读者等。接着对核心概念进行解释,阐述它们之间的关系并给出原理架构示意图和流程图。然后详细讲解核心算法原理、数学模型与公式,通过项目实战展示代码案例及解读。还介绍了实际应用场景、推荐相关工具资源,分析未来
- Kotlin 与移动开发的无缝对接秘籍
移动开发前沿
kotlin开发语言androidai
Kotlin与移动开发的无缝对接秘籍关键词:Kotlin、移动开发、Android、iOS、跨平台开发、协程、JetpackCompose摘要:本文深入解析Kotlin在移动开发领域的核心优势与实践方法,通过剖析Kotlin语言特性、跨平台架构、与原生生态的深度集成(如AndroidJetpack和iOSSwift互操作)、异步编程模型(协程)等关键技术,结合完整的项目实战案例,展示如何利用Kot
- 剖析AI人工智能领域Whisper的性能指标
AI大模型应用实战
人工智能whisperxcodeai
剖析AI人工智能领域Whisper的性能指标关键词:Whisper、语音识别、性能指标、ASR、AI模型评估、基准测试、语音转文本摘要:本文深入剖析OpenAI开发的Whisper语音识别系统的性能指标。我们将从技术原理、架构设计、性能基准测试等多个维度,全面分析Whisper在不同场景下的表现。文章将详细讲解Whisper的评估方法、关键性能指标解读、实际应用中的性能表现,以及与其他主流语音识别
- 【科研写作自动化工具】如何用AI技术组合(大模型+多Agent+自动化)打造一个“智能论文生产线”,把枯燥的写作流程变成自动化
n8n是一款开源的工作流自动化工具,类似于Zapier或Make(原Integromat),但更注重灵活性和开发者友好性。在课程文件中提到的n8n自动化流水线主要用于科研写作的自动化流程集成,以下是详细解释:n8n的核心功能可视化工作流设计:通过拖拽节点(Nodes)连接不同工具和服务,无需编写复杂代码即可搭建自动化流程。多平台集成:支持连接文献数据库(如PubMed、arXiv)、AI模型(如O
- 【V18.0 - 飞升篇】我把“大模型”装进电脑后,我的AI学会了改稿!——本地部署LLM终极保姆级教程
爱分享的飘哥
人工智能语言模型pythonLLMai
在过去的十几篇文章中,我们已经将我们的AI打造成了一个顶级的“分析师”。它能看、能听、能读,能预测多维度的价值指标,甚至能用SHAP解释自己的决策。它很强大,但它的能力,始终停留在“分析”和“诊断”的层面。它能告诉我“你的开头不行”,但无法告诉我“一个好的开头应该怎么写”。这就像我的副驾驶是一位顶级的F1数据分析师,他能告诉我每个弯道的最佳速度和刹车点,但他自己并不会开车。我需要一次终极的升级,我
- 零信任的两大关键技术:内容识别和行为分析
天空卫士
网络数据安全网络安全
零信任(ZeroTrust)安全对传统边界安全架构进行了重新评估和审视,并对安全架构思路给出了新的建议。零信任模型的核心零信任的意思是:从不信任,始终验证。其核心思想是,默认情况下不应该信任网络内部和外部的任何人/设备/系统,需要基于认证和授权重新构建访问控制的信任基础。如IP地址、主机、地理位置、所处网络等均不能作为可信的凭证。通过零信任,可以防止恶意用户访问企业内部的私有资源、防止数据泄露以及
- 用队列实现生产者-消费者模型 —— 详解与代码讲解
百年孤独_
C语言项目计算机网络C操作系统
用队列实现生产者-消费者模型——详解与代码讲解一、引言生产者-消费者问题(Producer-ConsumerProblem)是操作系统、并发编程和数据结构课程中的经典案例。它描述了两个角色:生产者负责生产数据并放入缓冲区,消费者则从缓冲区取出数据进行消费。两者通过一个共享的缓冲区(通常为队列)进行协作,既要保证数据的正确流转,又要避免资源竞争和数据丢失。本篇文章将以循环队列为核心,详细讲解如何用C
- AI大模型如何重塑软件开发流程?
真实的菜
活动人工智能
AI大模型如何重塑软件开发流程?文章摘要随着ChatGPT、Claude等AI大模型的快速发展,软件开发行业正经历着前所未有的变革。本文深入探讨了AI技术如何重塑传统的软件开发流程,分析了开发者角色的转变,并提供了拥抱AI时代的实践指南。核心观点AI大模型将开发者角色从"编码者"转变为"设计师"需求分析、代码生成、测试等环节将实现智能化新技能需求:AI工具使用、提示工程、跨领域整合未来趋势:低代码
- 结合创新idea:机器学习+运筹优化=CCF高端局
Ai多利
机器学习人工智能
2024深度学习发论文&模型涨点之——机器学习+运筹优化机器学习是人工智能的一个分支,它使计算机系统能够从数据中学习并改进其性能,而无需进行明确的编程。运筹优化,也称为运筹学或运营管理,是应用数学的一个分支,它使用数学模型和算法来支持复杂决策过程的制定。机器学习与运筹优化的结合是一个前沿且活跃的研究领域,它们相互补充,为解决复杂问题提供了新的思路和方法。小编整理了一些机器学习+运筹优化【论文+代码
- JVM类加载系统详解:深入理解Java类的生命周期
真实的菜
jvmjvmjava开发语言
JVM类加载系统详解:深入理解Java类的生命周期目录类加载机制类加载的生命周期类加载器分类双亲委派模型原理与作用️自定义类加载器自定义类加载器的实现步骤打破双亲委派模型的场景与案例性能优化与最佳实践总结类加载机制类加载机制是JVM的核心功能之一,它负责将Java类文件加载到内存中并转换为可执行的字节码。理解类加载机制对于Java开发者来说至关重要。类加载的生命周期类加载的完整生命周期包含七
- 基于KANO模型的调研问卷设计避坑
Alex艾力的IT数字空间
产品经理原型模式产品运营交互设计规范腾讯会议蓝湖
KANO模型调研中,设计无引导性偏差的问卷需遵循中立表述、选项平衡、逻辑验证原则。一、避免引导性偏差的核心策略1.问题中性化设计禁用倾向性词汇:避免“优化”“提升”等暗示性词语,改用中性描述。❌引导性:“增加扫码支付功能会让体验更好吗?”✅中性化:“扫码支付功能的存在对您来说如何?”对称性表述:正向/反向问题结构完全对仗,仅改变核心条件。正向:“提供XX功能时,您的满意度如何?”反向:“不提供XX
- 代码大模型崛起:垂直领域的技术革命与千亿市场争夺战
Liudef06小白
人工智能语言模型垂直模型
代码大模型崛起:垂直领域的技术革命与千亿市场争夺战全球软件工程师缺口达数千万,人力成本突破6000亿美元的压力下,一场由AI驱动的编程效率革命正以颠覆性姿态重塑开发领域。2025年,全球软件开发领域迎来关键转折点。据Gartner预测,全球软件开发支出将突破1.2万亿美元,其中人力成本占比高达50%,达6000亿美元。与此同时,全球软件工程师缺口持续扩大,预计未来十年将达到数千万量级。在这一背景下
- 【GitHub开源项目实战】Agent-Zero 多模态 Agent 框架的架构实现与实战落地
观熵
GitHub开源项目实战github开源架构
开源项目实战解析:Agent-Zero多模态Agent框架的架构实现与实战落地关键词:Agent-Zero、LLMAgent、多模态融合、LangGraph、结构化对话、函数调用、RAG、真实场景实战、开源项目分析摘要:Agent-Zero是一个以LangGraph为核心构建的多模态智能体框架,专注于大语言模型(LLMs)驱动下的多模态Agent系统实现,具备高度模块化、支持结构化对话状态流转、工
- 详解 OCCT Class SelectMgr_SelectableObject
我们来深入解析SelectMgr_SelectableObject这个类。SelectMgr_SelectableObject是AIS_InteractiveObject的直接父类,它专门负责定义一个对象“可被选择”的特性和行为。可以把它看作是OCCT选择机制中的核心数据模型。它本身不执行选择操作,而是为选择管理器(SelectMgr_SelectionManager)提供所有必要的信息,告诉管理
- 踏入真实:具身智能与物理世界的认知交响
当大型语言模型在文本的海洋中纵横捭阖,生成式AI在数字画布上挥洒创意时,人工智能仍有一个根本性的疆域尚未完全征服——真实的三维物理世界。理解一个苹果,不能仅靠词向量坐标;学会行走,无法通过阅读说明书达成;在拥挤的街道导航,远非处理符号逻辑那般简单。智能的进化,自生命诞生之初,便与具身性(Embodiment)和环境交互(Interaction)密不可分。我们的认知、学习、乃至意识的雏形,都源于身体
- Python scikit-learn 【机器学习库】全面讲解
让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——不写代码也能做软件开发》scikit-learn(简称sklearn)是Python最流行的机器学习库之一,提供简单高效的数据挖掘和数据分析工具。它基于NumPy、SciPy和Matplotlib构建,广泛应用于工业界和学术界。核心优势统一API设计:所有模型使用一致的接口(fit()、predict()、score())丰富的算法:覆
- 超详细yolov8/11-segment实例分割全流程概述:配置环境、数据标注、训练、验证/预测、onnx部署(c++/python)详解
因为yolo的检测/分割/姿态/旋转/分类模型的环境配置、训练、推理预测等命令非常类似,这里不再详细叙述,主要参考**【YOLOv8/11-detect目标检测全流程教程】**,下面有相关链接,这里主要针对数据标注、格式转换、模型部署等不同细节部分;【YOLOv8/11-detect目标检测全流程教程】超详细yolo8/11-detect目标检测全流程概述:配置环境、数据标注、训练、验证/预测、o
- 创新引入HAttention模块:提升YOLOv8小目标检测精度【YOLOv8】
程序员Gloria
YOLOv8YOLO目标跟踪人工智能目标检测
文章目录创新引入HAttention模块:提升YOLOv8小目标检测精度【YOLOv8】引言1.YOLOv8模型概述1.1YOLOv8架构1.2YOLOv8小目标检测的挑战2.HAttention模块:原理与设计2.1HAttention模块的动机2.2HAttention模块的结构3.HAttention模块在YOLOv8中的应用3.1引入HAttention模块3.2YOLOv8架构修改3.3
- 【无线通信】面向多天线用户的网络辅助全双工无蜂窝大规模MIMO研究
hans汉斯
论文荐读网络机器人大数据学习方法人工智能数据挖掘github
导读:基于网络辅助全双工技术无蜂窝大规模多输入多输出(multipleinputmultipleoutput,MIMO)系统是目前无线通信领域的关键技术之一。然而,现有的研究都假设采用完美硬件配置的单天线用户设备发送和接收信号,这种架构限制了系统整体性能的进一步提升。鉴于此,本文针对网络辅助全双工无蜂窝大规模MIMO环境中的多天线用户通信展开研究。利用现有的加性量化噪声模型,推导了低精度模数转换器
- SurveyForge:AI自动撰写综述论文的革命性工具,助力科研效率跃升
花生糖@
AIGC学习资料库人工智能AI论文AI助手
在学术研究领域,综述论文(SurveyPaper)的撰写是一项耗时且复杂的任务,通常需要数周甚至数月的文献调研与内容整合。如今,上海人工智能实验室、复旦大学与上海交通大学联合开源的SurveyForge,通过创新的AI技术,将这一过程压缩至10分钟内,且生成质量接近人工水平,成为科研人员的得力助手。项目简介SurveyForge是一款基于大语言模型(LLM)的自动综述论文生成工具,专为计算机科学领
- babylon-vrm-loader:让3D模型动起来的强大工具
纪栋岑Philomena
babylon-vrm-loader:让3D模型动起来的强大工具babylon-vrm-loaderglTFVRMextensionLoaderforbabylon.js项目地址:https://gitcode.com/gh_mirrors/ba/babylon-vrm-loader在现代网页开发中,3D渲染和交互已成为吸引用户注意力的重要手段。babylon-vrm-loader是一个开源项目,
- Qwen3 Reranker模型可以微调吗?
修昔底德
AI顿悟之旅人工智能LLMQwen3微调
可以,官方已经开放了完整的微调代码与训练范式,甚至推荐用LoRA/QLoRA做参数高效微调,把Qwen3-Reranker快速适配到你的专属知识库场景。下面总结一张总览表,然后分步骤讲怎样落地。说明是否支持微调✅支持(Apache-2.0许可,模型权重可商用)推荐方法LoRA/QLoRA(只训练几百万参数即可)可微调尺寸0.6B、4B、8B(0.6B单卡24GB就够;4B/8B建议多卡或Deeps
- A股的未来在哪里?
财云量化
python炒股自动化量化交易程序化交易a股未来发展宏观经济政策引导股票量化接口股票API接口
炒股自动化:申请官方API接口,散户也可以python炒股自动化(0),申请券商API接口python炒股自动化(1),量化交易接口区别Python炒股自动化(2):获取股票实时数据和历史数据Python炒股自动化(3):分析取回的实时数据和历史数据Python炒股自动化(4):通过接口向交易所发送订单Python炒股自动化(5):通过接口查询订单,查询账户资产股票量化,Python炒股,CSDN
- 供应链管理:MES制造执行系统与APS高级排程系统解析
快雪时晴-初晴融雪
供应链管理供应链管理
一、MES制造执行系统与APS高级排程系统解析维度MES制造执行系统APS高级排程系统定义制造执行系统,用于管理和监控制造过程,实现生产过程的实时监控、数据采集、质量管理、工艺执行等功能。高级计划与排程系统,通过优化算法和模型,在有限资源条件下制定最优生产计划,提高生产效率和灵活性。核心功能-生产计划与调度:细化ERP计划为可执行工单,动态调整生产进度。-生产过程管理:记录工序执行情况,实时监控异
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多