opencv 机器学习算法汇总

opencv提供了非常多的机器学习算法用于研究。这里对这些算法进行分类学习和研究,以抛砖引玉。这里使用的机器学习算法包括:人工神经网络,boost,决策树,最近邻,逻辑回归,贝叶斯,随机森林,SVM等算法等。

机器学习的过程相同,都要经历1、收集样本数据sampleData2.训练分类器mode3.对测试数据testData进行预测

这里使用一个在别处看到的例子,利用身高体重等原始信息预测男女的概率。通过一些简单的数据学习,用测试数据预测男女概率。


import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.TermCriteria;
import org.opencv.ml.ANN_MLP;
import org.opencv.ml.Boost;
import org.opencv.ml.DTrees;
import org.opencv.ml.KNearest;
import org.opencv.ml.LogisticRegression;
import org.opencv.ml.Ml;
import org.opencv.ml.NormalBayesClassifier;
import org.opencv.ml.RTrees;
import org.opencv.ml.SVM;
import org.opencv.ml.SVMSGD;
import org.opencv.ml.TrainData;

public class ML {
	public static void main(String[] args) {
		System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
		// 训练数据,两个维度,表示身高和体重
		float[] trainingData = { 186, 80, 185, 81, 160, 50, 161, 48 };
		// 训练标签数据,前两个表示男生0,后两个表示女生1,由于使用了多种机器学习算法,他们的输入有些不一样,所以labelsMat有三种 
		float[] labels = { 0f, 0f, 0f, 0f, 1f, 1f, 1f, 1f };
		int[] labels2 = { 0, 0, 1, 1 };
		float[] labels3 = { 0, 0, 1, 1 };
		// 测试数据,先男后女
		float[] test = { 184, 79, 159, 50 };

		Mat trainingDataMat = new Mat(4, 2, CvType.CV_32FC1);
		trainingDataMat.put(0, 0, trainingData);

		Mat labelsMat = new Mat(4, 2, CvType.CV_32FC1);
		labelsMat.put(0, 0, labels);

		Mat labelsMat2 = new Mat(4, 1, CvType.CV_32SC1);
		labelsMat2.put(0, 0, labels2);

		Mat labelsMat3 = new Mat(4, 1, CvType.CV_32FC1);
		labelsMat3.put(0, 0, labels3);

		Mat sampleMat = new Mat(2, 2, CvType.CV_32FC1);
		sampleMat.put(0, 0, test);

		MyAnn(trainingDataMat, labelsMat, sampleMat);
		MyBoost(trainingDataMat, labelsMat2, sampleMat);
		MyDtrees(trainingDataMat, labelsMat2, sampleMat);
		MyKnn(trainingDataMat, labelsMat3, sampleMat);
		MyLogisticRegression(trainingDataMat, labelsMat3, sampleMat);
		MyNormalBayes(trainingDataMat, labelsMat2, sampleMat);
		MyRTrees(trainingDataMat, labelsMat2, sampleMat);
		MySvm(trainingDataMat, labelsMat2, sampleMat);
		MySvmsgd(trainingDataMat, labelsMat2, sampleMat);
	}

	// 人工神经网络
	public static Mat MyAnn(Mat trainingData, Mat labels, Mat testData) {
		// train data using aNN
		TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels);
		Mat layerSizes = new Mat(1, 4, CvType.CV_32FC1);
		// 含有两个隐含层的网络结构,输入、输出层各两个节点,每个隐含层含两个节点
		layerSizes.put(0, 0, new float[] { 2, 2, 2, 2 });
		ANN_MLP ann = ANN_MLP.create();
		ann.setLayerSizes(layerSizes);
		ann.setTrainMethod(ANN_MLP.BACKPROP);
		ann.setBackpropWeightScale(0.1);
		ann.setBackpropMomentumScale(0.1);
		ann.setActivationFunction(ANN_MLP.SIGMOID_SYM, 1, 1);
		ann.setTermCriteria(new TermCriteria(TermCriteria.MAX_ITER + TermCriteria.EPS, 300, 0.0));
		boolean success = ann.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses());
		System.out.println("Ann training result: " + success);
		// ann.save("D:/bp.xml");//存储模型
		// ann.load("D:/bp.xml");//读取模型

		// 测试数据
		Mat responseMat = new Mat();
		ann.predict(testData, responseMat, 0);
		System.out.println("Ann responseMat:\n" + responseMat.dump());
		for (int i = 0; i < responseMat.size().height; i++) {
			if (responseMat.get(i, 0)[0] + responseMat.get(i, i)[0] >= 1)
				System.out.println("Girl\n");
			if (responseMat.get(i, 0)[0] + responseMat.get(i, i)[0] < 1)
				System.out.println("Boy\n");
		}
		return responseMat;
	}

	// Boost
	public static Mat MyBoost(Mat trainingData, Mat labels, Mat testData) {
		Boost boost = Boost.create();
		// boost.setBoostType(Boost.DISCRETE);
		boost.setBoostType(Boost.GENTLE);
		boost.setWeakCount(2);
		boost.setWeightTrimRate(0.95);
		boost.setMaxDepth(2);
		boost.setUseSurrogates(false);
		boost.setPriors(new Mat());

		TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels);
		boolean success = boost.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses());
		System.out.println("Boost training result: " + success);
		// boost.save("D:/bp.xml");//存储模型

		Mat responseMat = new Mat();
		float response = boost.predict(testData, responseMat, 0);
		System.out.println("Boost responseMat:\n" + responseMat.dump());
		for (int i = 0; i < responseMat.height(); i++) {
			if (responseMat.get(i, 0)[0] == 0)
				System.out.println("Boy\n");
			if (responseMat.get(i, 0)[0] == 1)
				System.out.println("Girl\n");
		}
		return responseMat;
	}

	// 决策树
	public static Mat MyDtrees(Mat trainingData, Mat labels, Mat testData) {
		DTrees dtree = DTrees.create(); // 创建分类器
		dtree.setMaxDepth(8); // 设置最大深度
		dtree.setMinSampleCount(2);
		dtree.setUseSurrogates(false);
		dtree.setCVFolds(0); // 交叉验证
		dtree.setUse1SERule(false);
		dtree.setTruncatePrunedTree(false);

		TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels);
		boolean success = dtree.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses());
		System.out.println("Dtrees training result: " + success);
		// dtree.save("D:/bp.xml");//存储模型

		Mat responseMat = new Mat();
		float response = dtree.predict(testData, responseMat, 0);
		System.out.println("Dtrees responseMat:\n" + responseMat.dump());
		for (int i = 0; i < responseMat.height(); i++) {
			if (responseMat.get(i, 0)[0] == 0)
				System.out.println("Boy\n");
			if (responseMat.get(i, 0)[0] == 1)
				System.out.println("Girl\n");
		}
		return responseMat;
	}

	// K最邻近
	public static Mat MyKnn(Mat trainingData, Mat labels, Mat testData) {
		final int K = 2;
		TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels);
		KNearest knn = KNearest.create();
		boolean success = knn.train(trainingData, Ml.ROW_SAMPLE, labels);
		System.out.println("Knn training result: " + success);
		// knn.save("D:/bp.xml");//存储模型

		// find the nearest neighbours of test data
		Mat results = new Mat();
		Mat neighborResponses = new Mat();
		Mat dists = new Mat();
		knn.findNearest(testData, K, results, neighborResponses, dists);
		System.out.println("results:\n" + results.dump());
		System.out.println("Knn neighborResponses:\n" + neighborResponses.dump());
		System.out.println("dists:\n" + dists.dump());
		for (int i = 0; i < results.height(); i++) {
			if (results.get(i, 0)[0] == 0)
				System.out.println("Boy\n");
			if (results.get(i, 0)[0] == 1)
				System.out.println("Girl\n");
		}

		return results;
	}

	// 逻辑回归
	public static Mat MyLogisticRegression(Mat trainingData, Mat labels, Mat testData) {
		LogisticRegression lr = LogisticRegression.create();

		TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels);
		boolean success = lr.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses());
		System.out.println("LogisticRegression training result: " + success);
		// lr.save("D:/bp.xml");//存储模型

		Mat responseMat = new Mat();
		float response = lr.predict(testData, responseMat, 0);
		System.out.println("LogisticRegression responseMat:\n" + responseMat.dump());
		for (int i = 0; i < responseMat.height(); i++) {
			if (responseMat.get(i, 0)[0] == 0)
				System.out.println("Boy\n");
			if (responseMat.get(i, 0)[0] == 1)
				System.out.println("Girl\n");
		}
		return responseMat;
	}

	// 贝叶斯
	public static Mat MyNormalBayes(Mat trainingData, Mat labels, Mat testData) {
		NormalBayesClassifier nb = NormalBayesClassifier.create();

		TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels);
		boolean success = nb.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses());
		System.out.println("NormalBayes training result: " + success);
		// nb.save("D:/bp.xml");//存储模型

		Mat responseMat = new Mat();
		float response = nb.predict(testData, responseMat, 0);
		System.out.println("NormalBayes responseMat:\n" + responseMat.dump());
		for (int i = 0; i < responseMat.height(); i++) {
			if (responseMat.get(i, 0)[0] == 0)
				System.out.println("Boy\n");
			if (responseMat.get(i, 0)[0] == 1)
				System.out.println("Girl\n");
		}
		return responseMat;
	}

	// 随机森林
	public static Mat MyRTrees(Mat trainingData, Mat labels, Mat testData) {
		RTrees rtrees = RTrees.create();
		rtrees.setMaxDepth(4);
		rtrees.setMinSampleCount(2);
		rtrees.setRegressionAccuracy(0.f);
		rtrees.setUseSurrogates(false);
		rtrees.setMaxCategories(16);
		rtrees.setPriors(new Mat());
		rtrees.setCalculateVarImportance(false);
		rtrees.setActiveVarCount(1);
		rtrees.setTermCriteria(new TermCriteria(TermCriteria.MAX_ITER, 5, 0));
		TrainData tData = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels);
		boolean success = rtrees.train(tData.getSamples(), Ml.ROW_SAMPLE, tData.getResponses());
		System.out.println("Rtrees training result: " + success);
		// rtrees.save("D:/bp.xml");//存储模型

		Mat responseMat = new Mat();
		rtrees.predict(testData, responseMat, 0);
		System.out.println("Rtrees responseMat:\n" + responseMat.dump());
		for (int i = 0; i < responseMat.height(); i++) {
			if (responseMat.get(i, 0)[0] == 0)
				System.out.println("Boy\n");
			if (responseMat.get(i, 0)[0] == 1)
				System.out.println("Girl\n");
		}
		return responseMat;
	}

	// 支持向量机
	public static Mat MySvm(Mat trainingData, Mat labels, Mat testData) {
		SVM svm = SVM.create();
		svm.setKernel(SVM.LINEAR);
		svm.setType(SVM.C_SVC);
		TermCriteria criteria = new TermCriteria(TermCriteria.EPS + TermCriteria.MAX_ITER, 1000, 0);
		svm.setTermCriteria(criteria);
		svm.setGamma(0.5);
		svm.setNu(0.5);
		svm.setC(1);

		TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels);
		boolean success = svm.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses());
		System.out.println("Svm training result: " + success);
		// svm.save("D:/bp.xml");//存储模型
		// svm.load("D:/bp.xml");//读取模型

		Mat responseMat = new Mat();
		svm.predict(testData, responseMat, 0);
		System.out.println("SVM responseMat:\n" + responseMat.dump());
		for (int i = 0; i < responseMat.height(); i++) {
			if (responseMat.get(i, 0)[0] == 0)
				System.out.println("Boy\n");
			if (responseMat.get(i, 0)[0] == 1)
				System.out.println("Girl\n");
		}
		return responseMat;
	}

	// SGD支持向量机
	public static Mat MySvmsgd(Mat trainingData, Mat labels, Mat testData) {
		SVMSGD Svmsgd = SVMSGD.create();
		TermCriteria criteria = new TermCriteria(TermCriteria.EPS + TermCriteria.MAX_ITER, 1000, 0);
		Svmsgd.setTermCriteria(criteria);
		Svmsgd.setInitialStepSize(2);
		Svmsgd.setSvmsgdType(SVMSGD.SGD);
		Svmsgd.setMarginRegularization(0.5f);
		boolean success = Svmsgd.train(trainingData, Ml.ROW_SAMPLE, labels);
		System.out.println("SVMSGD training result: " + success);
		// svm.save("D:/bp.xml");//存储模型
		// svm.load("D:/bp.xml");//读取模型

		Mat responseMat = new Mat();
		Svmsgd.predict(testData, responseMat, 0);
		System.out.println("SVMSGD responseMat:\n" + responseMat.dump());
		for (int i = 0; i < responseMat.height(); i++) {
			if (responseMat.get(i, 0)[0] == 0)
				System.out.println("Boy\n");
			if (responseMat.get(i, 0)[0] == 1)
				System.out.println("Girl\n");
		}
		return responseMat;
	}
}

输出结果:

Ann training result: true
Ann responseMat:
[0.014712702, 0.01492399;
 0.98786205, 0.987822]
Boy

Girl

Boost training result: true
Boost responseMat:
[0;
 0]
Boy

Boy

Dtrees training result: true
Dtrees responseMat:
[0;
 1]
Boy

Girl

Knn training result: true
results:
[0;
 1]
Knn neighborResponses:
[0, 0;
 1, 1]
dists:
[5, 5;
 1, 8]
Boy

Girl

LogisticRegression training result: true
LogisticRegression responseMat:
[0;
 1]
Boy

Girl

NormalBayes training result: true
NormalBayes responseMat:
[0;
 1]
Boy

Girl

Rtrees training result: true
Rtrees responseMat:
[0;
 1]
Boy

Girl

Svm training result: true
SVM responseMat:
[0;
 1]
Boy

Girl

SVMSGD training result: true
SVMSGD responseMat:
[1;
 1]
Girl

Girl



参考:

http://www.cnblogs.com/denny402/p/5032232.html

http://www.cnblogs.com/denny402/p/5032490.html


你可能感兴趣的:(一些工具使用,android应用开发)