redis aof持久化源码分析

本文基于redis 5.0.7的源码分析aof持久化。
redis的aof持久化方式有两个重要的组成部分

  1. 增量写命令同步到磁盘
  2. aof文件全量重写

一、增量同步

1. 增量写命令追加到缓冲区

redis有个缓冲区,未被写入磁盘的命令首先被存入缓冲区,达到条件后再写入磁盘

struct redisServer {
	// sds 是redis定义的char数组
	sds aof_buf;      /* AOF buffer, written before entering the event loop */
}

redis每次执行完写操作后,会调用propagate函数将写操作追加到aof_buf缓冲区

void propagate(struct redisCommand *cmd, int dbid, robj **argv, int argc, int flags)
{
    if (server.aof_state != AOF_OFF && flags & PROPAGATE_AOF)
    	// aof功能打开的前提下,把新的追加aof_buffer
        feedAppendOnlyFile(cmd,dbid,argv,argc);
    if (flags & PROPAGATE_REPL)
        replicationFeedSlaves(server.slaves,dbid,argv,argc);
}

2. 缓冲区数据刷入磁盘

aof缓冲区同步到磁盘有三种策略

appendfsync always // 每条写命令同步一次
appendfsync everysec // 每秒钟同步一次
appendfsync no // 不手动同步,由操作系统决定同步的时刻

说明: appendfsync no策略 仅仅调用write函数将缓冲区的数据写如操作系统内核缓冲区,至于内核缓冲区的数据什么时候写入磁盘,由操作系统决定

每秒钟同步一次是一种折中(compromise)策略。同步需要调用系统函数fsync,涉及到操作系统用户态和核心态的切换,同时真正的磁盘IO发生在这里,比较耗性能。

redis的servercron大循环里调用flushAppendOnlyFile同步数据

void flushAppendOnlyFile(int force) {
    ssize_t nwritten;
    int sync_in_progress = 0;
    mstime_t latency;
	... ... 
    latencyStartMonitor(latency);
    // 调用write函数将aof_buf的数据写入文件的内核缓冲区
    nwritten = aofWrite(server.aof_fd,server.aof_buf,sdslen(server.aof_buf));
    latencyEndMonitor(latency);
   
   ... ...

try_fsync:
    /* Don't fsync if no-appendfsync-on-rewrite is set to yes and there are
     * children doing I/O in the background. */
    if (server.aof_no_fsync_on_rewrite &&
        (server.aof_child_pid != -1 || server.rdb_child_pid != -1))
            return;

    /* Perform the fsync if needed. */
    if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
        /* redis_fsync is defined as fdatasync() for Linux in order to avoid
         * flushing metadata. */
        latencyStartMonitor(latency);
        // 直接调用fsync函数将内核缓冲区的数据写入磁盘
        redis_fsync(server.aof_fd); /* Let's try to get this data on the disk */
        latencyEndMonitor(latency);
        latencyAddSampleIfNeeded("aof-fsync-always",latency);
        server.aof_fsync_offset = server.aof_current_size;
        server.aof_last_fsync = server.unixtime;
    } else if ((server.aof_fsync == AOF_FSYNC_EVERYSEC &&
                server.unixtime > server.aof_last_fsync)) {
        if (!sync_in_progress) {
        	// 创建后台线程,在后台线程里调用sync函数将内核缓冲区的数据写入磁盘
            aof_background_fsync(server.aof_fd);
            server.aof_fsync_offset = server.aof_current_size;
        }
        server.aof_last_fsync = server.unixtime;
    }
}

如果是每秒同步一次,则会创建一个线程,线程里调用fsync同步数据。

/* Starts a background task that performs fsync() against the specified
 * file descriptor (the one of the AOF file) in another thread. */
void aof_background_fsync(int fd) {
    bioCreateBackgroundJob(BIO_AOF_FSYNC,(void*)(long)fd,NULL,NULL);
}

后台调度线程会从任务队列中取出任务并执行

void *bioProcessBackgroundJobs(void *arg) {
    struct bio_job *job;
    unsigned long type = (unsigned long) arg;
    sigset_t sigset;

    while(1) {
        listNode *ln;
		
		// 从任务队列中取出位于队首的任务
        ln = listFirst(bio_jobs[type]);
        job = ln->value;
        /* It is now possible to unlock the background system as we know have
         * a stand alone job structure to process.*/
        pthread_mutex_unlock(&bio_mutex[type]);

       // 根据任务类型执行任务
        if (type == BIO_CLOSE_FILE) {
        	// 关闭文件
            close((long)job->arg1);
        } else if (type == BIO_AOF_FSYNC) {
        	// 执行fsync同步数据
            redis_fsync((long)job->arg1);
        } else if (type == BIO_LAZY_FREE) {
            if (job->arg1)
                lazyfreeFreeObjectFromBioThread(job->arg1);
            else if (job->arg2 && job->arg3)
                lazyfreeFreeDatabaseFromBioThread(job->arg2,job->arg3);
            else if (job->arg3)
                lazyfreeFreeSlotsMapFromBioThread(job->arg3);
        } else {
            serverPanic("Wrong job type in bioProcessBackgroundJobs().");
        }
        // 释放存放任务的对象
        zfree(job);

        pthread_mutex_lock(&bio_mutex[type]);
        // 删除任务队列队首元素
        listDelNode(bio_jobs[type],ln);
        bio_pending[type]--;

        /* Unblock threads blocked on bioWaitStepOfType() if any. */
        pthread_cond_broadcast(&bio_step_cond[type]);
    }
}

很多帖子说redis是单线程的,非也非也。redis是多进程多线程的,只是单线程执行读写命令而已。

write系统调用和fsync的差别

write系统调用不保证数据最终写入磁盘,如果遇到机器掉电,内核缓冲区的数据没有写入磁盘,那么数据也就丢了。所以仅调用write是不够的。
redis aof持久化源码分析_第1张图片
与redis的aof机制类似,MySQL同样是将写命令追加到binlog里。给mysql的master配置一个slave时,slave会拿master的binlog来恢复数据,从而和master数据保持一致。

二、全量重写aof文件

全量重写流程

redis aof持久化源码分析_第2张图片

为何要有全量同步

随着写操作的进行,aof文件越来越大,同时冗余的数据也很多。假设有这样的一个操作序列

set key value1
set key value2
set key value3 
... ...
set key valueN

那么aof文件仅仅需要保存 set key valueN 这个命令用于数据库还原。

重写的触发条件

auto-aof-rewrite-percentage 100  // 当前文件超过上次同步后文件百分比
auto-aof-rewrite-min-size 64mb  // 重写的文件最小大小

在serverCron大事件循环里判断是否满足重写的条件

int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) {
		... ...
		
        /* Trigger an AOF rewrite if needed. */
        if (server.aof_state == AOF_ON &&
            server.rdb_child_pid == -1 &&
            server.aof_child_pid == -1 &&
            server.aof_rewrite_perc &&
            // 文件大小超过最小值
            server.aof_current_size > server.aof_rewrite_min_size)
        {
            long long base = server.aof_rewrite_base_size ?
                server.aof_rewrite_base_size : 1;
            long long growth = (server.aof_current_size*100/base) - 100;
            // 文件增幅超过指定大小
            if (growth >= server.aof_rewrite_perc) {
                serverLog(LL_NOTICE,"Starting automatic rewriting of AOF on %lld%% growth",growth);
                // 开启子进程进行文件重写
                rewriteAppendOnlyFileBackground();
            }
        }
        ... ...
        
}

在子进程里,redis将数据库中所有的键值对转换成对应格式的命令写入新的aof文件。源码就补贴了,基本这个流程。

你可能感兴趣的:(redis aof持久化源码分析)