Python 任务自动化工具 tox 教程

???? Python猫” ,一个值得加星标的公众号

Python 任务自动化工具 tox 教程_第1张图片

在我刚翻译完的 Python 打包系列文章中,作者提到了一个神奇的测试工具 tox,而且他本人就是 tox 的维护者之一。趁着话题的相关性,本文将对它做简单的介绍,说不定大家在开发项目时能够用得上。

Python 任务自动化工具 tox 教程_第2张图片

Command line driven CI frontend and development task automation tool

命令行驱动的 CI 前端和开发任务自动化工具

tox 的项目地址是:https://github.com/tox-dev/tox

其核心作用是支持创建隔离的 Python 环境,在里面可以安装不同版本的 Python 解释器与各种依赖库,以此方便开发者做自动化测试、打包、持续集成等事情。

简单来说,tox 是一个管理测试虚拟环境的命令行工具。它已存在多年且广被开发者们使用,例如,著名的云计算平台 OpenStack 也采用了它,作为最基础的测试工具之一。

1、tox 能做什么?

细分的用途包括:

  • 创建开发环境

  • 运行静态代码分析与测试工具

  • 自动化构建包

  • 针对 tox 构建的软件包运行测试

  • 检查软件包是否能在不同的 Python 版本/解释器中顺利安装

  • 统一持续集成(CI)和基于命令行的测试

  • 创建和部署项目文档

  • 将软件包发布到 PyPI 或任何其它平台

tox 官方文档中列出了 40 余种使用场景的示例,详细的列表可查看:https://tox.readthedocs.io/en/latest/examples.html

Python 任务自动化工具 tox 教程_第3张图片

2、tox 怎么配置?

关于它的用法:使用pip install tox 安装,使用tox 运行全部测试环境,和tox -e envname 运行指定的环境。还有不少的命令行参数,通过tox -h 查看。

tox 的行为由其配置文件控制,当前它支持 3 种配置文件:

  1. pyproject.toml

  2. tox.ini

  3. setup.cfg

以 tox 项目自己的 tox.ini 配置内容为例,可以看到它是这样配置的(https://github.com/tox-dev/tox/blob/master/tox.ini):

Python 任务自动化工具 tox 教程_第4张图片 Python 任务自动化工具 tox 教程_第5张图片

每个[xxx]及其下方内容组成一个章节(p),每个章节间使用空行作间隔。

[tox]下面是全局性的配置项,envlist 字段定义了 tox 去操作的环境。[xxx]下面是 xxx 虚拟环境的配置项,[xxx:yyy]继承 xxx 的配置,同时其自身配置项的优先级更高。

对于每个虚拟环境,可用的配置项很多,例如常用的有:description(描述信息)、basepython(Python解释器版本)、deps(环境依赖项)、commands(命令语句)等等。

tox 还支持作变量替换,它提供了一些内置的基础变量(全局的或对于虚拟环境的):{toxinidir}、{homedir}、{envname}、{envdir}等等。

除了基础性的变量替换,它还支持这些高级用法:

  • 取操作系统的环境变量:{env:KEY},效果等同于os.environ['KEY'] 。可以变化成:{env:KEY:DEFAULTVALUE},在取不到环境变量时则使用默认值;{env:KEY:{env:DEFAULT_OF_KEY}},达到 if-else 的取值效果

  • 传递命令行参数:{posargs:DEFAULTS},当没有命令行参数时,使用 DEFAULTS 值。使用方式:tox arg1 arg2 传两个参,或者tox -- --opt1 arg1 将“-- opt1 arg1”作为整体传入。

  • 章节间传值:{[pname]valuename},不同章节的内容可以传递使用。

  • 交互式控制台注入:{tty:ON_VALUE:OFF_VALUE},当交互式 shell 控制台开启时,使用第一个值,否则使用第二个。pytest 在使用“--pdb”时,是这样的例子。

花括号“{}”除了可以做变量替换使用,它还可以作为“或关系”判断的取值。直接看下面的例子:

[tox]
envlist = {py27,py36}-django{15,16}

{py27,py36}-django{15,16} 的 2 组花括号内各有 2 个值,它们实际可以组合成 4 个环境:py27-django15、py27-django16、py36-django15、py36-django16。

关于 tox 有哪些配置项、使用条件、什么含义、高级用法等等内容,可在官方文档中查看:https://tox.readthedocs.io/en/latest/config.html

3、tox 的插件化

除了自身强大的可配置性,tox 还具有很强的可扩展性,它是可插拔的(pluggable),围绕它产生了一个极为丰富的插件生态。

使用pip search tox ,可以看到数量众多的“tox-”开头的库,它们都是 tox 的插件包。其中不乏 setuptools、pipenv、conda、travis、pytest、docker 等被大家熟知的名字。

Python 任务自动化工具 tox 教程_第6张图片

tox 开放了挺多的 API 接口,方便其他人定制开发插件。

Python 任务自动化工具 tox 教程_第7张图片

4、tox 的工作流程

接下来看看 tox 是怎么运作的:

Python 任务自动化工具 tox 教程_第8张图片

其工作流程中主要的环节有:

  • 配置(从figuration):加载配置文件(如 tox.ini),解析命令行参数,读取系统环境变量等

  • 打包(packaging):可选的,对于带有 setup.py 文件的项目,可以在这步去生成它的源发行版

  • 创建虚拟环境:默认使用 virtualenv 来创建虚拟环境,并根据配置项中的“deps”安装所需的依赖项,然后执行配置好的命令(commands)

  • 报告(report):汇总所有虚拟环境的运行结果并罗列出来

5、小结

tox 本身定位是一个测试工具,它试图令 Pytho 测试工作变得自动化、标准化与流程化。但跟 unittest 和 pytest 这些测试框架不同,它作用的是代码层面之外的事情,是一种项目级的工具。因此,它需要跟这些测试框架相结合,或者同时处理多种自动化任务(如跑 pep8、测代码覆盖率、生成文档等等),这样才能更好地发挥它的价值。

它的一大特色在于创建/管理虚拟环境,但这只是为了方便测试而使用的手段,因此相比其它可管理虚拟环境的工具,如 Virtualenvwrapper、conda、pipenv、poetry,它在某些方面就存在着不足。

tox 还有强大的可配置性与丰富的插件支持,这使得它在运用上具有很大的可能性与自由度。因此,不少忠实开发者仍在持续地在使用它,比如,我刚翻译好的系列文章的作者就是它的维护者之一。

Python 任务自动化工具 tox 教程_第9张图片

最后还需补充一点,tox 使用配置文件作驱动,但配置文件还是挺繁琐的,因此有人开发了一个跟 tox 相似的nox,使用 Python 文件来做配置。这个项目也很受欢迎,吸引了很多项目投入其门下,例如 pipx、urllib3、Salt 等等。对该项目感兴趣的话,请查看:https://nox.thea.codes/en/stable

作者简介:豌豆花下猫,生于广东毕业于武大,现为苏漂程序员,有一些极客思维,也有一些人文情怀,有一些温度,还有一些态度。

优质文章,推荐阅读:

Python 打包——过去、现在与未来

如何使用 Python 操作 Git 代码?GitPython 入门介绍

Python 内存分配时的小秘密

深度辨析 Python 的 eval() 与 exec()

你可能感兴趣的:(Python 任务自动化工具 tox 教程)