百度发布全新 NLG 训练模型 ERNIE-GEN,获 5 项 SOTA!

百度发布全新 NLG 训练模型 ERNIE-GEN,获 5 项 SOTA!_第1张图片

头图 | CSDN下载自视觉中国

5月20日,百度ERNIE重磅发布全新的语言生成预训练模型ERNIE-GEN,解决自然语言处理领域“生成”方向的难题,让机器不但能“理解”人类的意思,还能完成更高阶的“表达”。这项工作在4类语言生成任务,5项国际权威英文数据集上均取得SOTA,被国际顶级AI学术会议IJCAI 2020收录

 

论文链接:https://arxiv.org/abs/2001.11314

项目地址https://github.com/PaddlePaddle/ERNIE

在自然语言处理领域中,语言理解(NLU)和语言生成(NLG)是两大核心任务。百度发布的ERNIE-GEN预训练模型指向语言生成(NLG),这听起来很晦涩,实际上并不陌生。回顾一些经典科幻电影,比如《终结者》、《黑客帝国》中描述的未来机器人,他们能够流畅地实现和人类对话,这就是一个自然语言生成系统。日常生活中,手机输入法的联想词、对答如流的智能音箱、问答机器人等,都是常见自然语言生成领域问题。

可见自然语言生成技术非常重要,针对性地进行预训练模型的研发,也成为这个领域重要玩家的共识。从 2019 年以来,Google、Facebook、微软等先后发布了多个针对自然语言生成的预训练模型,取得了一定进展。百度2019年3月推出预训练模型ERNIE,7月升级到ERNIE2.0,并迅速在12月登顶国际权威数据集GLUE,这意味着百度ERNIE已成为国际上首屈一指的预训练模型。今年3月,ERNIE又在全球规模最大的语义评测比赛 SemEval 2020斩获5项世界冠军。

之前,领域内的预训练模型主要关注于语言理解类任务,在生成任务上还处于探索阶段。如以BERT、ERNIE为代表的语言理解预训练模型在理解方面取得了许多重大突破,然而,对于序列到序列的自然语言生成任务,这些主流方法并未带来明显改进。早期如微软MASS和UniLM等工作在下游生成任务上取得了显著提升,但仍有问题亟待解决。

本次在ERNIE基础上推出的语言生成预训练模型ERNIE-GEN,正是针对之前工作中语言生成任务的核心难题,提出了多项创新方法,基于multi-flow机制,模型可以生成完整语义片段,显著提升了自然语言生成的任务效果。

ERNIE-GEN 首次将短语、实体的预测引入生成预训练中。这种机制借鉴了人类写作的构思过程,使模型具备了语义完备短语生成的能力,如直接生成“New York”(而非“New”和“York”)。此外,传统的自回归生成模型当前词的生成强依赖于上一个词,这种有偏的学习方式会在上文生成质量不佳时,导致后续的错误累积。ERNIE-GEN 提出Infilling生成机制并和噪声增强策略相结合有效缓解了这种生成过程中的错误累积。为了实现上述机制,ERNIE-GEN基于transformer设计了multi-flow attention结构。

最终据实验结果显示,ERNIE-GEN 在文本摘要生成、问题生成、多轮问答和对话4类生成任务的5个公开数据中,均取得了SOTA效果。

 

目前,ERNIE-GEN的英文预训练模型已开源,而基于更大规模预训练数据集的ERNIE-GEN也正式发布于https://github.com/PaddlePaddle/ERNIE/。ERNIE-GEN已应用于百度内部新闻标题生成等业务,未来还将支持机器翻译等更多类型的生成任务。

赋予机器「认知」能力,是人工智能中最具挑战的问题。深入理解语言,进而让机器具备人类的表达能力无疑意义重大。

【End】

百度发布全新 NLG 训练模型 ERNIE-GEN,获 5 项 SOTA!_第2张图片

更多精彩推荐
☞登 GitHub 趋势榜首德国疫情追踪 App 号称可保疫情隐私数据无忧,你信吗?
☞安卓机+数据线,带你开发部署人脸识别应用

☞踢翻这碗狗粮:程序员花 7 个月敲出 eBay,只因女票喜欢糖果盒
☞我佛了!用KNN实现验证码识别,又 Get 到一招
☞如何使用 SQL Server FILESTREAM 存储非结构化数据?这篇文章告诉你
☞加密价格更新周期:看似杂乱无章,实际内藏玄机
你点的每个“在看”,我都认真当成了喜欢

你可能感兴趣的:(百度发布全新 NLG 训练模型 ERNIE-GEN,获 5 项 SOTA!)