环境:Windows10 x64、python 3.7、anaconda3、keras
2.2.4、OpenCV
3.4.1
Training and testing smile-detector with machine learning models
这部分为参考学习,转载原处:
Author: coneypo
Blog: http://www.cnblogs.com/AdaminXie/
Github: https://github.com/coneypo/Smile_Detector (这里可以下载数据集)
(1) get_features.py
输入人脸图像路径;
利用 Dlib 的 “shape_predictor_68_face_landmarks.dat” 提取嘴部20个特征点坐标的40个特征值;
import dlib # 人脸处理的库 Dlib
import numpy as np # 数据处理的库 numpy
import cv2 # 图像处理的库 OpenCv
import os # 读取文件
import csv # CSV 操作
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('data/data_dlib_model/shape_predictor_68_face_landmarks.dat')
# 输入图像文件所在路径,返回一个41维数组(包含提取到的40维特征和1维输出标记)
def get_features(img_rd):
# 输入: img_rd: 图像文件
# 输出: positions_lip_arr: feature point 49 to feature point 68, 20 feature points / 40D in all
# read img file
img = cv2.imread(img_rd)
# 取灰度
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 计算68点坐标
positions_68_arr = []
faces = detector(img_gray, 0)
landmarks = np.matrix([[p.x, p.y] for p in predictor(img, faces[0]).parts()])
for idx, point in enumerate(landmarks):
# 68点的坐标
pos = (point[0, 0], point[0, 1])
positions_68_arr.append(pos)
positions_lip_arr = []
# 将点 49-68 写入 CSV
# 即 positions_68_arr[48]-positions_68_arr[67]
for i in range(48, 68):
positions_lip_arr.append(positions_68_arr[i][0])
positions_lip_arr.append(positions_68_arr[i][1])
return positions_lip_arr
# 读取图像所在的路径
path_images_with_smiles = "data/data_imgs/database/smiles/"
path_images_no_smiles = "data/data_imgs/database/no_smiles/"
# 获取路径下的图像文件
imgs_smiles = os.listdir(path_images_with_smiles)
imgs_no_smiles = os.listdir(path_images_no_smiles)
# 存储提取特征数据的 CSV 的路径
path_csv = "data/data_csvs/"
# write the features into CSV
def write_into_CSV():
with open(path_csv+"data.csv", "w", newline="") as csvfile:
writer = csv.writer(csvfile)
# 处理带笑脸的图像
print("######## with smiles #########")
for i in range(len(imgs_smiles)):
print(path_images_with_smiles+imgs_smiles[i])
# append "1" means "with smiles"
features_csv_smiles = get_features(path_images_with_smiles+imgs_smiles[i])
features_csv_smiles.append(1)
print("positions of lips:", features_csv_smiles, "\n")
# 写入CSV
writer.writerow(features_csv_smiles)
# 处理不带笑脸的图像
print("######## no smiles #########")
for i in range(len(imgs_no_smiles)):
print(path_images_no_smiles+imgs_no_smiles[i])
# append "0" means "no smiles"
features_csv_no_smiles = get_features(path_images_no_smiles + imgs_no_smiles[i])
features_csv_no_smiles.append(0)
print("positions of lips:", features_csv_no_smiles, "\n")
# 写入CSV
writer.writerow(features_csv_no_smiles)
# 写入CSV
# write_into_CSV()
(2) ML_ways_sklearn.py(线性回归模型、多层神经网络模型、线性SVM模型、梯度下降模型:
)
# pandas 读取 CSV
import pandas as pd
# 分割数据
from sklearn.model_selection import train_test_split
# 用于数据预加工标准化
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression # 线性模型中的 Logistic 回归模型
from sklearn.neural_network import MLPClassifier # 神经网络模型中的多层网络模型
from sklearn.svm import LinearSVC # SVM 模型中的线性 SVC 模型
from sklearn.linear_model import SGDClassifier # 线性模型中的随机梯度下降模型
from sklearn.externals import joblib
# 从 csv 读取数据
def pre_data():
# 41 维表头
column_names = []
for i in range(0, 40):
column_names.append("feature_" + str(i + 1))
column_names.append("output")
# read csv
rd_csv = pd.read_csv("data/data_csvs/data.csv", names=column_names)
# 输出 csv 文件的维度
# print("shape:", rd_csv.shape)
X_train, X_test, y_train, y_test = train_test_split(
# input 0-40
# output 41
rd_csv[column_names[0:40]],
rd_csv[column_names[40]],
# 25% for testing, 75% for training
test_size=0.25,
random_state=33)
return X_train, X_test, y_train, y_test
path_models = "data/data_models/"
# LR, logistic regression, 逻辑斯特回归分类(线性模型)
def model_LR():
# get data
X_train_LR, X_test_LR, y_train_LR, y_test_LR = pre_data()
# 数据预加工
# 标准化数据,保证每个维度的特征数据方差为1,均值为0。使得预测结果不会被某些维度过大的特征值而主导
ss_LR = StandardScaler()
X_train_LR = ss_LR.fit_transform(X_train_LR)
X_test_LR = ss_LR.transform(X_test_LR)
# 初始化 LogisticRegression
LR = LogisticRegression()
# 调用 LogisticRegression 中的 fit() 来训练模型参数
LR.fit(X_train_LR, y_train_LR)
# save LR model
joblib.dump(LR, path_models + "model_LR.m")
# 评分函数
score_LR = LR.score(X_test_LR, y_test_LR)
print("The accurary of LR:", score_LR)
# print(type(ss_LR))
return (ss_LR)
# model_LR()
# MLPC, Multi-layer Perceptron Classifier, 多层感知机分类(神经网络)
def model_MLPC():
# get data
X_train_MLPC, X_test_MLPC, y_train_MLPC, y_test_MLPC = pre_data()
# 数据预加工
ss_MLPC = StandardScaler()
X_train_MLPC = ss_MLPC.fit_transform(X_train_MLPC)
X_test_MLPC = ss_MLPC.transform(X_test_MLPC)
# 初始化 MLPC
MLPC = MLPClassifier(hidden_layer_sizes=(13, 13, 13), max_iter=500)
# 调用 MLPC 中的 fit() 来训练模型参数
MLPC.fit(X_train_MLPC, y_train_MLPC)
# save MLPC model
joblib.dump(MLPC, path_models + "model_MLPC.m")
# 评分函数
score_MLPC = MLPC.score(X_test_MLPC, y_test_MLPC)
print("The accurary of MLPC:", score_MLPC)
return (ss_MLPC)
# model_MLPC()
# Linear SVC, Linear Supported Vector Classifier, 线性支持向量分类(SVM支持向量机)
def model_LSVC():
# get data
X_train_LSVC, X_test_LSVC, y_train_LSVC, y_test_LSVC = pre_data()
# 数据预加工
ss_LSVC = StandardScaler()
X_train_LSVC = ss_LSVC.fit_transform(X_train_LSVC)
X_test_LSVC = ss_LSVC.transform(X_test_LSVC)
# 初始化 LSVC
LSVC = LinearSVC()
# 调用 LSVC 中的 fit() 来训练模型参数
LSVC.fit(X_train_LSVC, y_train_LSVC)
# save LSVC model
joblib.dump(LSVC, path_models + "model_LSVC.m")
# 评分函数
score_LSVC = LSVC.score(X_test_LSVC, y_test_LSVC)
print("The accurary of LSVC:", score_LSVC)
return ss_LSVC
# model_LSVC()
# SGDC, Stochastic Gradient Decent Classifier, 随机梯度下降法求解(线性模型)
def model_SGDC():
# get data
X_train_SGDC, X_test_SGDC, y_train_SGDC, y_test_SGDC = pre_data()
# 数据预加工
ss_SGDC = StandardScaler()
X_train_SGDC = ss_SGDC.fit_transform(X_train_SGDC)
X_test_SGDC = ss_SGDC.transform(X_test_SGDC)
# 初始化 SGDC
SGDC = SGDClassifier(max_iter=5)
# 调用 SGDC 中的 fit() 来训练模型参数
SGDC.fit(X_train_SGDC, y_train_SGDC)
# save SGDC model
joblib.dump(SGDC, path_models + "model_SGDC.m")
# 评分函数
score_SGDC = SGDC.score(X_test_SGDC, y_test_SGDC)
print("The accurary of SGDC:", score_SGDC)
return ss_SGDC
# model_SGDC()
# use the saved model
from sklearn.externals import joblib
from get_features import get_features
import ML_ways_sklearn
import cv2
# path of test img
path_test_img = "data/data_imgs/test_imgs/test1.jpg"
# 提取单张40维度特征
positions_lip_test = get_features(path_test_img)
# path of models
path_models = "data/data_models/"
print("The result of"+path_test_img+":")
print('\n')
# ######### LR ###########
LR = joblib.load(path_models+"model_LR.m")
ss_LR = ML_ways_sklearn.model_LR()
X_test_LR = ss_LR.transform([positions_lip_test])
y_predict_LR = str(LR.predict(X_test_LR)[0]).replace('0', "no smile").replace('1', "with smile")
print("LR:", y_predict_LR)
# ######### LSVC ###########
LSVC = joblib.load(path_models+"model_LSVC.m")
ss_LSVC = ML_ways_sklearn.model_LSVC()
X_test_LSVC = ss_LSVC.transform([positions_lip_test])
y_predict_LSVC = str(LSVC.predict(X_test_LSVC)[0]).replace('0', "no smile").replace('1', "with smile")
print("LSVC:", y_predict_LSVC)
# ######### MLPC ###########
MLPC = joblib.load(path_models+"model_MLPC.m")
ss_MLPC = ML_ways_sklearn.model_MLPC()
X_test_MLPC = ss_MLPC.transform([positions_lip_test])
y_predict_MLPC = str(MLPC.predict(X_test_MLPC)[0]).replace('0', "no smile").replace('1', "with smile")
print("MLPC:", y_predict_MLPC)
# ######### SGDC ###########
SGDC = joblib.load(path_models+"model_SGDC.m")
ss_SGDC = ML_ways_sklearn.model_SGDC()
X_test_SGDC = ss_SGDC.transform([positions_lip_test])
y_predict_SGDC = str(SGDC.predict(X_test_SGDC)[0]).replace('0', "no smile").replace('1', "with smile")
print("SGDC:", y_predict_SGDC)
img_test = cv2.imread(path_test_img)
img_height = int(img_test.shape[0])
img_width = int(img_test.shape[1])
# show the results on the image
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img_test, "LR: "+y_predict_LR, (int(img_height/10), int(img_width/10)), font, 0.8, (84, 255, 159), 1, cv2.LINE_AA)
cv2.putText(img_test, "LSVC: "+y_predict_LSVC, (int(img_height/10), int(img_width/10*2)), font, 0.8, (84, 255, 159), 1, cv2.LINE_AA)
cv2.putText(img_test, "MLPC: "+y_predict_MLPC, (int(img_height/10), int(img_width/10)*3), font, 0.8, (84, 255, 159), 1, cv2.LINE_AA)
cv2.putText(img_test, "SGDC: "+y_predict_SGDC, (int(img_height/10), int(img_width/10)*4), font, 0.8, (84, 255, 159), 1, cv2.LINE_AA)
cv2.namedWindow("img", 2)
cv2.imshow("img", img_test)
cv2.waitKey(0)
(4)show_lip.py
# 显示嘴部特征点
# Draw the positions of someone's lip
import dlib # 人脸识别的库 Dlib
import cv2 # 图像处理的库 OpenCv
from get_features import get_features # return the positions of feature points
path_test_img = "data/data_imgs/test_imgs/test1.jpg"
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('data/data_dlib_model/shape_predictor_68_face_landmarks.dat')
# Get lip's positions of features points
positions_lip = get_features(path_test_img)
img_rd = cv2.imread(path_test_img)
# Draw on the lip points
for i in range(0, len(positions_lip), 2):
print(positions_lip[i], positions_lip[i+1])
cv2.circle(img_rd, tuple([positions_lip[i], positions_lip[i+1]]), radius=1, color=(0, 255, 0))
cv2.namedWindow("img_read", 2)
cv2.imshow("img_read", img_rd)
cv2.waitKey(0)
(5)视频检测——check_smile_from_camera.py
# use the saved model
from sklearn.externals import joblib
import ML_ways_sklearn
import dlib # 人脸处理的库 Dlib
import numpy as np # 数据处理的库 numpy
import cv2 # 图像处理的库 OpenCv
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('data/data_dlib_model/shape_predictor_68_face_landmarks.dat')
# OpenCv 调用摄像头
cap = cv2.VideoCapture(0)
# 设置视频参数
cap.set(3, 480)
def get_features(img_rd):
# 输入: img_rd: 图像文件
# 输出: positions_lip_arr: feature point 49 to feature point 68, 20 feature points / 40D in all
# 取灰度
img_gray = cv2.cvtColor(img_rd, cv2.COLOR_RGB2GRAY)
# 计算68点坐标
positions_68_arr = []
faces = detector(img_gray, 0)
landmarks = np.matrix([[p.x, p.y] for p in predictor(img_rd, faces[0]).parts()])
for idx, point in enumerate(landmarks):
# 68点的坐标
pos = (point[0, 0], point[0, 1])
positions_68_arr.append(pos)
positions_lip_arr = []
# 将点 49-68 写入 CSV
# 即 positions_68_arr[48]-positions_68_arr[67]
for i in range(48, 68):
positions_lip_arr.append(positions_68_arr[i][0])
positions_lip_arr.append(positions_68_arr[i][1])
return positions_lip_arr
while cap.isOpened():
# 480 height * 640 width
flag, img_rd = cap.read()
kk = cv2.waitKey(1)
img_gray = cv2.cvtColor(img_rd, cv2.COLOR_RGB2GRAY)
# 人脸数 faces
faces = detector(img_gray, 0)
# 检测到人脸
if len(faces) != 0:
# 提取单张40维度特征
positions_lip_test = get_features(img_rd)
# path of models
path_models = "data/data_models/"
# ######### LR ###########
LR = joblib.load(path_models+"model_LR.m")
ss_LR = ML_ways_sklearn.model_LR()
X_test_LR = ss_LR.transform([positions_lip_test])
y_predict_LR = str(LR.predict(X_test_LR)[0]).replace('0', "no smile").replace('1', "with smile")
print("LR:", y_predict_LR)
# ######### LSVC ###########
LSVC = joblib.load(path_models+"model_LSVC.m")
ss_LSVC = ML_ways_sklearn.model_LSVC()
X_test_LSVC = ss_LSVC.transform([positions_lip_test])
y_predict_LSVC = str(LSVC.predict(X_test_LSVC)[0]).replace('0', "no smile").replace('1', "with smile")
print("LSVC:", y_predict_LSVC)
# ######### MLPC ###########
MLPC = joblib.load(path_models+"model_MLPC.m")
ss_MLPC = ML_ways_sklearn.model_MLPC()
X_test_MLPC = ss_MLPC.transform([positions_lip_test])
y_predict_MLPC = str(MLPC.predict(X_test_MLPC)[0]).replace('0', "no smile").replace('1', "with smile")
print("MLPC:", y_predict_MLPC)
# ######### SGDC ###########
SGDC = joblib.load(path_models+"model_SGDC.m")
ss_SGDC = ML_ways_sklearn.model_SGDC()
X_test_SGDC = ss_SGDC.transform([positions_lip_test])
y_predict_SGDC = str(SGDC.predict(X_test_SGDC)[0]).replace('0', "no smile").replace('1', "with smile")
print("SGDC:", y_predict_SGDC)
print('\n')
# 按下 'q' 键退出
if kk == ord('q'):
break
# 窗口显示
# cv2.namedWindow("camera", 0) # 如果需要摄像头窗口大小可调
cv2.imshow("camera", img_rd)
# 释放摄像头
cap.release()
# 删除建立的窗口
cv2.destroyAllWindows()
从视频检测中,可以看出训练效果不是很好
解决方法:
因为从前面学习中我们可以发现,样本数据集过少,训练模型较差;这里给出一个简单的基于CNN训练好的模型(对于入门者来说,也是找了好久),这里贴出来供大家学习。
数据集:./simple_CNN.530-0.65.hdf5
——》 表情识别模板下载链接
#coding=utf-8
#表情识别
import cv2
from keras.models import load_model
import numpy as np
import datetime
startTime = datetime.datetime.now()
emotion_classifier = load_model(
'./simple_CNN.530-0.65.hdf5')
endTime = datetime.datetime.now()
print(endTime - startTime)
emotion_labels = {
0: 'angry',
1: 'disgust',
2: 'fear',
3: 'happy',
4: 'sad',
5: 'surprise',
6: 'calm'
}
img = cv2.imread("./emotion.png")
face_classifier = cv2.CascadeClassifier(
"D:/mydownload/opencv341/opencv/build/etc/haarcascades/haarcascade_frontalface_default.xml"
)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(
gray, scaleFactor=1.2, minNeighbors=3, minSize=(40, 40))
color = (255, 0, 0)
font = cv2.FONT_HERSHEY_SIMPLEX # 定义字体
for (x, y, w, h) in faces: # 矩形框位置
gray_face = gray[(y):(y + h), (x):(x + w)]
gray_face = cv2.resize(gray_face, (48, 48))
gray_face = gray_face / 255.0
gray_face = np.expand_dims(gray_face, 0)
gray_face = np.expand_dims(gray_face, -1)
emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
emotion = emotion_labels[emotion_label_arg]
print(emotion)
cv2.rectangle(img, (x + 10, y + 10), (x + h - 10, y + w - 10),
color, 2)
img = img.copy() # 备份操作
img2 = cv2.putText(img, emotion, (int(x + h * 0.3), int(y)), font, 1, color, 2)
# 图像,文字内容, 坐标 ,字体,大小,颜色,字体厚度
cv2.imshow("Image", img2)
cv2.waitKey(0)
cv2.destroyAllWindows()
附:
1、更多人脸识别示例参考:https://github.com/cungudafa/cungudafa.github.io