基于mykernel 2.0编写一个操作系统内核

本文为课程实验,based on mengning mykernel 2.0。

1. 准备工作


使用cat /proc/version使用查看系统版本

Develop your own OS kernel by reusing Linux infrastructure, based on x86-64/Linux Kernel 4.15.0. mykernel 1.0 based on IA32/Linux Kernel 3.9.4.

2. 配置并编译mykernel 2.0


wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch
sudo apt install axel
axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
xz -d linux-5.4.34.tar.xz
tar -xvf linux-5.4.34.tar   # or tar -xvf linux-5.4.34.tar.gz
cd linux-5.4.34
patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
make defconfig # Default configuration is based on 'x86_64_defconfig'
make -j$(nproc) # 编译的时间比较久
sudo apt install qemu # install QEMU
qemu-system-x86_64 -kernel arch/x86/boot/bzImage

基于mykernel 2.0编写一个操作系统内核_第1张图片
从qemu窗口中您可以看到my_start_kernel在执行,同时my_timer_handler时钟中断处理程序周期性执行。

可能报出的错误及解决方法:

执行wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch时可能会报以下错误:

Connecting to raw.githubusercontent.com(raw.githubusercontent.com)|151.101.228.133|:443... failed: Connection refused.

原因是GitHub的raw.githubusercontent.com域名解析被污染了,可以在https://www.ipaddress.com/查询raw.githubusercontent.com的真实IP,然后修改hosts,在/etc/hosts/中绑定查到的host,例如

sudo vim /etc/hosts
#绑定host
199.232.28.133 raw.githubusercontent.com

修改完hosts如果还不能成功运行,执行以下命令,取消证书的检查即可

 wget --no-check-certificate https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch

3. 添加简单时间片轮转调度模块


在mymain.c基础上继续写进程描述PCB和进程链表管理等代码,在myinterrupt.c的基础上完成进程切换代码。首先在mykernel目录下增加一个mypcb.h 头文件,用来定义进程控制块(Process Control Block),也就是进程结构体的定义,在Linux内核中是struct tast_struct结构体。


/*
 *  linux/mykernel/mypcb.h
 * [https://github.com/mengning/mykernel/blob/master/mypcb.h](https://github.com/mengning/mykernel/blob/master/mypcb.h)
 */


#define MAX_TASK_NUM        4
#define KERNEL_STACK_SIZE   1024*8


/* CPU-specific state of this task */
struct Thread {
    unsigned long       ip;
    unsigned long       sp;
};


typedef struct PCB{
    int pid;
    volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
    char stack[KERNEL_STACK_SIZE];
    /* CPU-specific state of this task */
    struct Thread thread;
    unsigned long   task_entry;
    struct PCB *next;
}tPCB;


void my_schedule(void);

对mymain.c进行修改,这里是mykernel内核代码的入口,负责初始化内核的各个组成部分。在Linux内核源代码中,实际的内核入口是init/main.c中的start_kernel(void)函数。

/*
 *  linux/mykernel/mymain.c
 */
 
#include "mypcb.h"


tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0;


void my_process(void);


void __init my_start_kernel(void)
{
    int pid = 0;
    int i;
    /* Initialize process 0*/
    task[pid].pid = pid;
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];
    /*fork more process */
    for(i=1;i

在mymain.c中添加了my_process函数,用来作为进程的代码模拟一个个进程,只是我们这里采用的是进程运行完一个时间片后主动让出CPU的方式,没有采用中断的时机完成进程切换,因为中断机制实现起来较为复杂,等后续部分再逐渐深入。

void my_process(void)
{
    int i = 0;
    while(1)
    {
        i++;
        if(i%10000000 == 0)
        {
            printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
            if(my_need_sched == 1)
            {
                my_need_sched = 0;
                my_schedule();
            }
            printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
        }
    }
}

进程运行过程中是怎么知道时间片消耗完了呢?这就需要时钟中断处理过程中记录时间片。对myinterrupt.c中修改my_timer_handler用来记录时间片。


/*
 *  linux/mykernel/myinterrupt.c
 */
#include "mypcb.h"


extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;


/*
 * Called by timer interrupt.
 */
void my_timer_handler(void)
{
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;
    }
    time_count ++ ;
    return;
}

对myinterrupt.c进行修改,主要是增加了进程切换的代码my_schedule(void)函数,在Linux内核源代码中对应的是schedule(void)函数。


void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;


    if(my_current_task == NULL
        || my_current_task->next == NULL)
    {
      return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {
      my_current_task = next;
      printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
      /* switch to next process */
      asm volatile(
         "pushq %%rbp\n\t"       /* save rbp of prev */
         "movq %%rsp,%0\n\t"     /* save rsp of prev */
         "movq %2,%%rsp\n\t"     /* restore  rsp of next */
         "movq $1f,%1\n\t"       /* save rip of prev */
         "pushq %3\n\t"
         "ret\n\t"               /* restore  rip of next */
         "1:\t"                  /* next process start here */
         "popq %%rbp\n\t"
        : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
        : "m" (next->thread.sp),"m" (next->thread.ip)
      );
    }
    return;
}

修改完成之后运行以下命令重新编译运行:

make clean
make
qemu-system-x86_64 -kernel arch/x86/boot/bzImage

基于mykernel 2.0编写一个操作系统内核_第2张图片

可能报出的错误及解决方法:

在修改完代码后执行make会出现以下错误:

mykernel/mymain.c: Assembler messages:
mykernel/mymain.c:48: 错误: bad register name `%rsp'
mykernel/mymain.c:49: 错误: unsupported instruction `push'
mykernel/mymain.c:50: 错误: unsupported instruction `push'
scripts/Makefile.build:265: recipe for target 'mykernel/mymain.o' failed
make[1]: *** [mykernel/mymain.o] Error 1
Makefile:1691: recipe for target 'mykernel' failed
make: *** [mykernel] Error 2

看到错误的第一反应该是寄存器的位数不支持,所以我就把上述代码中的所有rsp、rbp寄存器改成了esp、ebp寄存器。pushq和movq都改成了pushl和movl,然后使用make再重新编译。结果倒是不报错了,qemu正常启动,但是却一直卡在了Booting from ROM....

最后的做法是改回了原来的代码,然后使用make clean和两次make然后又运行成功了?!如果出现这种错误你也可以试一试......

4. 代码分析


4.1 时间片轮转调度模块代码分析

最终修改完成的mypcb.hmymain.cmyinterrupt.c文件内容如下(使用注释解释):

/*
 *  linux/mykernel/mymain.c
 *
 *  Kernel internal my_start_kernel
 *  Change IA32 to x86-64 arch, 2020/4/26
 *
 *  Copyright (C) 2013, 2020  Mengning
 *  
 */
#include 
#include 
#include 
#include 
#include 


#include "mypcb.h"

tPCB task[MAX_TASK_NUM];     //声明tPCB类型的数组
tPCB * my_current_task = NULL;    //声明当前task的指针
volatile int my_need_sched = 0;     //判断是否需要调度

void my_process(void);

/** 从my_start_kernel开始执行,实际的内核入口是init/main.c中的start_kernel(void)函数 **/
void __init my_start_kernel(void)
{
    int pid = 0;
    int i;
    /* Initialize process 0*/
    task[pid].pid = pid;      //初始化0号进程
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;   //入口
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];
    /*
    ======= fork more process =======
    Linux创建子进程时,也是使用fork复制进程,然后改变一些关键信息,比如进程PID等
    */
    for(i=1;ipid);
            if(my_need_sched == 1)    //判断是否需要调度
            {
                my_need_sched = 0;
                my_schedule();
            }
            printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
        }     
    }
}
/*
 *  linux/mykernel/mypcb.h
 *
 *  Kernel internal PCB types
 *
 *  Copyright (C) 2013  Mengning
 *
 */

/** 定义进程的最大数量和内核栈的大小 **/
#define MAX_TASK_NUM        4
#define KERNEL_STACK_SIZE   1024*2
/* CPU-specific state of this task */

//存储ip,sp
struct Thread {
    unsigned long        ip;
    unsigned long        sp;
};

typedef struct PCB{
    int pid;    //进程的id
    volatile long state;    /* 定义进程状态: -1 unrunnable, 0 runnable, >0 stopped */
    unsigned long stack[KERNEL_STACK_SIZE];  //进程堆栈
    /* CPU-specific state of this task */
    struct Thread thread;
    unsigned long    task_entry;      //进程入口,
    struct PCB *next;    //指向下一个进程PCB
}tPCB;

//调度函数
void my_schedule(void);
/*
 *  linux/mykernel/myinterrupt.c
 *
 *  Kernel internal my_timer_handler
 *  Change IA32 to x86-64 arch, 2020/4/26
 *
 *  Copyright (C) 2013, 2020  Mengning
 *
 */
#include 
#include 
#include 
#include 
#include 

#include "mypcb.h"

/* task:任务队列
 * my_current_task:当前运行的进程
 * my_need_sched:调度标示
 * time_count:计数器
 */
extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;

/* 模拟时钟中断 */
void my_timer_handler(void)
{
    if(time_count%1000 == 0 && my_need_sched != 1)   //控制时间片的大小,设置调度的标志
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;
    } 
    time_count ++ ;  
    return;      
}
/* 进程切换 */
void my_schedule(void)   
{
    tPCB * next;
    tPCB * prev;

    if(my_current_task == NULL 
        || my_current_task->next == NULL){
        return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped 根据下一个进程的状态来判断是否切换*/
    {        
        my_current_task = next; 
        printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);  
        /* switch to next process */
        asm volatile(    
            "pushq %%rbp\n\t"         /* save rbp of prev */
            "movq %%rsp,%0\n\t"     /* save rsp of prev */
            "movq %2,%%rsp\n\t"     /* restore  rsp of next */
            "movq $1f,%1\n\t"       /* save rip of prev ,%1f指接下来的标号为1的位置*/    
            "pushq %3\n\t" 
            "ret\n\t"                 /* restore  rip of next */
            "1:\t"                  /* next process start here */
            "popq %%rbp\n\t"
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        ); 
    }  
    return;    
}

4.2 操作系统内核核心功能及运行工作机制分析

4.2.0 准备工作:内嵌汇编语法

基于mykernel 2.0编写一个操作系统内核_第3张图片

============================ 示例 ==============================
/* 下面的%0和%1代表第一个参数和第二个参数,其index是从输出部分算起,到输入部分结束 
  "=m" 表示内存变量只写
  "r"表示将输入变量放入通用寄存器
  %%表示转移字符
  $0表示立即数0
*/
int main(void){
    int input, output, temp;
    input = 1;
    __asm__ __volatile__(
        "movl $0, %%eax; \n\t"       // eax = 0
        "movl %%eax, %1; \n\t"      // temp = 0
        "movl %2, %%eax; \n\t"      // eax = input = 1
        "movl %%eax, %0; \n\t"      // output = eax = 1
        :"=m"(output), "=m"(temp)    // $0 = output  $1 = temp
        :"r"(input)   // $2 = input
        :"eax");
    // 输出为 0, 1
    printf("%d, %d \n",temp, output);
    return 0;
}

4.2.1 启动执行第一个进程的关键汇编代码分析

asm volatile(
    "movq %1,%%rsp\n\t" /* 将进程原堆栈栈顶的地址存入RSP寄存器 */
    "pushq %1\n\t"      /* 将当前RBP寄存器值压栈 */
    "pushq %0\n\t"      /* 将当前进程的RIP压栈 */
    "ret\n\t"           /* ret命令正好可以让压栈的进程RIP保存到RIP寄存器中 */
    :
    : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)
);

由于启动的第一个进程是我们自己初始化好的0号进程,所以上面代码的task[pid].thread.iptask[pid].thread.sp分别为0号进程ip和sp。

  • movq %1,%%rsp:将RSP寄存器指向进程0的堆栈栈底
  • pushq %1:本来应该压栈当前进程的RBP,因为是空栈,所以RSP与RBP相同,这里简化起见,直接使用进程的堆栈栈顶的值task[pid].thread.sp,之后RSP = RSP - 8(堆栈地址空间从高到低,位数为64位)
  • pushq %0:将当前进程的RIP(这里是初始化的值my_process(void)函数的位置)入栈,RSP = RSP - 8
  • ret:将栈顶位置的task[0].thread.ip,也就是my_process(void)函数的地址放入RIP寄存器中,RSP = RSP + 8,修改IP的内容,从而实现近转移

4.2.2 进程上下文切换的关键代码分析

	printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);  
    	/* switch to next process */
    	asm volatile(	
        	"pushq %%rbp\n\t" 	    /* save rbp of prev */
        	"movq %%rsp,%0\n\t" 	/* save rsp of prev */
        	"movq %2,%%rsp\n\t"     /* restore  rsp of next */
        	"movq $1f,%1\n\t"       /* save rip of prev */	
        	"pushq %3\n\t" 
        	"ret\n\t" 	            /* restore  rip of next */
        	"1:\t"                  /* next process start here */
        	"popq %%rbp\n\t"
        	: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
        	: "m" (next->thread.sp),"m" (next->thread.ip)
    	); 

为了简便,假设系统只有两个进程,分别是进程0和进程1。进程0由内核启动时初始化执行,然后需要进程调度和进程切换,然后开始执行进程1。进程切换过程中进程0和进程1的堆栈和相关寄存器的变化过程大致如下:

  • pushq %%rbp:保存0号进程的rbp,rsp = rsp - 8(x86向下增长)
  • movq %%rsp,%0:把0号进程的rsp保存在prev->thread.sp变量中
  • movq %2,%%rsp:rsp指向1号进程的栈顶
  • movq $1f,%1:其中的$1f是magic number,指的是下面的1:的地址,这句的作用是prev->thread.ip = $1f
  • pushq %3:把即将执行的next进程的指令地址next->thread.ip入栈,这时的next->thread.ip可能是进程1的起点my_process(void)函数,也可能是$1f(标号1)。第一次被执行从头开始为进程1的起点my_process(void)函数,其余的情况均为$1f(标号1),因为next进程如果之前运行过那么它就一定曾经也作为prev进程被进程切换过
  • ret:就是将压入栈中的next->thread.ip放入RIP寄存器,为什么不直接放入RIP寄存器呢?因为程序不能直接使用RIP寄存器,只能通过call、ret等指令间接改变RIP寄存器。使用ret从而实现近转移
  • 1::标号1是一个特殊的地址位置,该位置的地址是$1f。
  • popq %%rbp:像这段代码的第一句pushq %%rbp一样,进程切换时会把当前栈的基址RBP保存在栈顶。所以本条命令的作用就是将1号进程堆栈基地址从堆栈中恢复到RBP寄存器中,从而完成进程的切换,即RBP和RSP都指向了进程1的堆栈。

参考文章:

  • https://www.jianshu.com/p/5c1a352ba242
  • https://github.com/mengning/mykernel
  • https://mp.weixin.qq.com/s/SzpN1BNty5aPDZhNdCO5yA

你可能感兴趣的:(基于mykernel 2.0编写一个操作系统内核)