第二节 Spark2.3源码解析之SparkContext的创建及源码

本系列”spark2源码解析”,均以最新spark2.3.0版本为蓝本进行编写,转载请注明出处

一 目录

  1. SparkContext定义
  2. 从源码中看出SparkContext包含哪些功能
  3. 重点解读createTaskScheduler
  4. SparkContext初始化时TaskSchedulerImpl两个接口
  5. 资源管理调度策略FIFO和FAIR

二 明细

SparkContext的定义
开发Spark应用的入口,它负责和整个集群进行交互,包括创建RDDs,accumulators和广播变量;在每个活动的JVM中,创建新SparkContext时需要stop之前的.

创建SparkContext之前需要传递SparkConf对象,这个参数设置优先默认参数和系统参数

val conf = new SparkConf().setAppName(appName).setMaster(master)
val sc=new SparkContext(conf)

如下为SparkContext部分代码,可以看出它包含哪些功能:
- 设定参数
- 事件日志目录
- 事件日志编译
- 监听
- spark环境
- 状态跟踪
- 控制台进度
- spark ui界面管理
- hadoop配置信息
- 执行内存
- 后端程序调度
- 任务调度
- Rpc心跳机制
- DAG 调度
- 应用ID
- 应用ID分配
- 事件日志监听
- 分配和管理执行器
- 清除
- 监听启动程序
- 管理jars
- 管理文件
- 关闭hook ref
- 存储APP 状态

  /* ------------------------------------------------------------------------------------- *
   | Private variables. These variables keep the internal state of the context, and are    |
   | not accessible by the outside world. They're mutable since we want to initialize all  |
   | of them to some neutral value ahead of time, so that calling "stop()" while the       |
   | constructor is still running is safe.                                                 |
   * ------------------------------------------------------------------------------------- */

  private var _conf: SparkConf = _
  private var _eventLogDir: Option[URI] = None
  private var _eventLogCodec: Option[String] = None
  private var _listenerBus: LiveListenerBus = _
  private var _env: SparkEnv = _
  private var _statusTracker: SparkStatusTracker = _
  private var _progressBar: Option[ConsoleProgressBar] = None
  private var _ui: Option[SparkUI] = None
  private var _hadoopConfiguration: Configuration = _
  private var _executorMemory: Int = _
  private var _schedulerBackend: SchedulerBackend = _
  private var _taskScheduler: TaskScheduler = _
  private var _heartbeatReceiver: RpcEndpointRef = _
  @volatile private var _dagScheduler: DAGScheduler = _
  private var _applicationId: String = _
  private var _applicationAttemptId: Option[String] = None
  private var _eventLogger: Option[EventLoggingListener] = None
  private var _executorAllocationManager: Option[ExecutorAllocationManager] = None
  private var _cleaner: Option[ContextCleaner] = None
  private var _listenerBusStarted: Boolean = false
  private var _jars: Seq[String] = _
  private var _files: Seq[String] = _
  private var _shutdownHookRef: AnyRef = _
  private var _statusStore: AppStatusStore = _

Spark整个创建过程的核心源码,最重要是createTaskScheduler,如下:

  // We need to register "HeartbeatReceiver" before "createTaskScheduler" because Executor will
    // retrieve "HeartbeatReceiver" in the constructor. (SPARK-6640)
    //创建之前需要注册心跳机制
    _heartbeatReceiver = env.rpcEnv.setupEndpoint(
      HeartbeatReceiver.ENDPOINT_NAME, new HeartbeatReceiver(this))

    // Create and start the scheduler
    val (sched, ts) = SparkContext.createTaskScheduler(this, master, deployMode)
    _schedulerBackend = sched
    _taskScheduler = ts
    _dagScheduler = new DAGScheduler(this)
    _heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)

    // start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's
    // constructor
    _taskScheduler.start()

    _applicationId = _taskScheduler.applicationId()
    _applicationAttemptId = taskScheduler.applicationAttemptId()
    _conf.set("spark.app.id", _applicationId)
    if (_conf.getBoolean("spark.ui.reverseProxy", false)) {
      System.setProperty("spark.ui.proxyBase", "/proxy/" + _applicationId)
    }
    _ui.foreach(_.setAppId(_applicationId))
    _env.blockManager.initialize(_applicationId)

以上是创建顺序,现在看看createTaskScheduler这个方法包含内容.通过它可以获取不同资源管理类型和部署类型的调度器.

    /**
   * Create a task scheduler based on a given master URL.
   * Return a 2-tuple of the scheduler backend and the task scheduler.
   */
  private def createTaskScheduler(
      sc: SparkContext,
      master: String,
      deployMode: String): (SchedulerBackend, TaskScheduler) = {
    import SparkMasterRegex._

    // When running locally, don't try to re-execute tasks on failure.
    val MAX_LOCAL_TASK_FAILURES = 1

    master match {
      case "local" =>
        val scheduler = new TaskSchedulerImpl(sc, MAX_LOCAL_TASK_FAILURES, isLocal = true)
        val backend = new LocalSchedulerBackend(sc.getConf, scheduler, 1)
        scheduler.initialize(backend)
        (backend, scheduler)

      case LOCAL_N_REGEX(threads) =>
        def localCpuCount: Int = Runtime.getRuntime.availableProcessors()
        // local[*] estimates the number of cores on the machine; local[N] uses exactly N threads.
        val threadCount = if (threads == "*") localCpuCount else threads.toInt
        if (threadCount <= 0) {
          throw new SparkException(s"Asked to run locally with $threadCount threads")
        }
        val scheduler = new TaskSchedulerImpl(sc, MAX_LOCAL_TASK_FAILURES, isLocal = true)
        val backend = new LocalSchedulerBackend(sc.getConf, scheduler, threadCount)
        scheduler.initialize(backend)
        (backend, scheduler)

      case LOCAL_N_FAILURES_REGEX(threads, maxFailures) =>
        def localCpuCount: Int = Runtime.getRuntime.availableProcessors()
        // local[*, M] means the number of cores on the computer with M failures
        // local[N, M] means exactly N threads with M failures
        val threadCount = if (threads == "*") localCpuCount else threads.toInt
        val scheduler = new TaskSchedulerImpl(sc, maxFailures.toInt, isLocal = true)
        val backend = new LocalSchedulerBackend(sc.getConf, scheduler, threadCount)
        scheduler.initialize(backend)
        (backend, scheduler)

      case SPARK_REGEX(sparkUrl) =>
        val scheduler = new TaskSchedulerImpl(sc)
        val masterUrls = sparkUrl.split(",").map("spark://" + _)
        val backend = new StandaloneSchedulerBackend(scheduler, sc, masterUrls)
        scheduler.initialize(backend)
        (backend, scheduler)

      case LOCAL_CLUSTER_REGEX(numSlaves, coresPerSlave, memoryPerSlave) =>
        // Check to make sure memory requested <= memoryPerSlave. Otherwise Spark will just hang.
        val memoryPerSlaveInt = memoryPerSlave.toInt
        if (sc.executorMemory > memoryPerSlaveInt) {
          throw new SparkException(
            "Asked to launch cluster with %d MB RAM / worker but requested %d MB/worker".format(
              memoryPerSlaveInt, sc.executorMemory))
        }

        val scheduler = new TaskSchedulerImpl(sc)
        val localCluster = new LocalSparkCluster(
          numSlaves.toInt, coresPerSlave.toInt, memoryPerSlaveInt, sc.conf)
        val masterUrls = localCluster.start()
        val backend = new StandaloneSchedulerBackend(scheduler, sc, masterUrls)
        scheduler.initialize(backend)
        backend.shutdownCallback = (backend: StandaloneSchedulerBackend) => {
          localCluster.stop()
        }
        (backend, scheduler)

      case masterUrl =>
        val cm = getClusterManager(masterUrl) match {
          case Some(clusterMgr) => clusterMgr
          case None => throw new SparkException("Could not parse Master URL: '" + master + "'")
        }
        try {
          val scheduler = cm.createTaskScheduler(sc, masterUrl)
          val backend = cm.createSchedulerBackend(sc, masterUrl, scheduler)
          cm.initialize(scheduler, backend)
          (backend, scheduler)
        } catch {
          case se: SparkException => throw se
          case NonFatal(e) =>
            throw new SparkException("External scheduler cannot be instantiated", e)
        }
    }
  }

针对常见的Standalone的部署方式来分析,在case SPARK_REGEX(sparkUrl) ,返回了 backend,schedule;
在org.apache.spark.scheduler.TaskSchedulerImpl,通过SchedulerBackend管理了所有cluster的调度,主要思想一些通用的逻辑.

当系统刚启动的时候,sparkContext初始化,有两个接口,initialize和start.这里会包含spark的任务调度策略FIFO和FAIR,默认是FIFO

    private var schedulableBuilder: SchedulableBuilder = null
  // default scheduler is FIFO
  private val schedulingModeConf = conf.get(SCHEDULER_MODE_PROPERTY, SchedulingMode.FIFO.toString)
  val schedulingMode: SchedulingMode =
    try {
      SchedulingMode.withName(schedulingModeConf.toUpperCase(Locale.ROOT))
    } catch {
      case e: java.util.NoSuchElementException =>
        throw new SparkException(s"Unrecognized $SCHEDULER_MODE_PROPERTY: $schedulingModeConf")
    }

  val rootPool: Pool = new Pool("", schedulingMode, 0, 0)

  // This is a var so that we can reset it for testing purposes.
  private[spark] var taskResultGetter = new TaskResultGetter(sc.env, this)

  override def setDAGScheduler(dagScheduler: DAGScheduler) {
    this.dagScheduler = dagScheduler
  }


   def initialize(backend: SchedulerBackend) {
    this.backend = backend
    schedulableBuilder = {
      schedulingMode match {
        case SchedulingMode.FIFO =>
          new FIFOSchedulableBuilder(rootPool)
        case SchedulingMode.FAIR =>
          new FairSchedulableBuilder(rootPool, conf)
        case _ =>
          throw new IllegalArgumentException(s"Unsupported $SCHEDULER_MODE_PROPERTY: " +
          s"$schedulingMode")
      }
    }
    schedulableBuilder.buildPools()
  }


  override def start() {
    backend.start()

    if (!isLocal && conf.getBoolean("spark.speculation", false)) {
      logInfo("Starting speculative execution thread")
      speculationScheduler.scheduleWithFixedDelay(new Runnable {
        override def run(): Unit = Utils.tryOrStopSparkContext(sc) {
          checkSpeculatableTasks()
        }
      }, SPECULATION_INTERVAL_MS, SPECULATION_INTERVAL_MS, TimeUnit.MILLISECONDS)
    }
  }

☆┈━═┈━═┈━═┈━═┈━═☆因为您的赞赏,您会读到更多优质文章☆┈━═┈━═┈━═┈━═┈━═☆
这里写图片描述

你可能感兴趣的:(spark2,大数据)