代码出自 尚硅谷 《java数据结构与算法》,讲师:韩顺平
冒泡排序
public class BubbleSort {
public static void main(String[] args) {
// int arr[] = {3, 9, -1, 10, 20};
//
// System.out.println("排序前");
// System.out.println(Arrays.toString(arr));
//为了容量理解,我们把冒泡排序的演变过程,给大家展示
//测试一下冒泡排序的速度O(n^2), 给80000个数据,测试
//创建要给80000个的随机的数组
int[] arr = new int[80000];
for(int i =0; i < 80000;i++) {
arr[i] = (int)(Math.random() * 8000000); //生成一个[0, 8000000) 数
}
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
//测试冒泡排序
bubbleSort(arr);
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序后的时间是=" + date2Str);
//System.out.println("排序后");
//System.out.println(Arrays.toString(arr));
}
// 将前面额冒泡排序算法,封装成一个方法
public static void bubbleSort(int[] arr) {
// 冒泡排序 的时间复杂度 O(n^2), 自己写出
int temp = 0; // 临时变量
boolean flag = false; // 标识变量,表示是否进行过交换
for (int i = 0; i < arr.length - 1; i++) {
for (int j = 0; j < arr.length - 1 - i; j++) {
// 如果前面的数比后面的数大,则交换
if (arr[j] > arr[j + 1]) {
flag = true;
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
//System.out.println("第" + (i + 1) + "趟排序后的数组");
//System.out.println(Arrays.toString(arr));
if (!flag) { // 在一趟排序中,一次交换都没有发生过
break;
} else {
flag = false; // 重置flag!!!, 进行下次判断
}
}
}
}
插入排序
public class InsertSort {
public static void main(String[] args) {
//int[] arr = {101, 34, 119, 1, -1, 89};
// 创建要给80000个的随机的数组
int[] arr = new int[80000];
for (int i = 0; i < 80000; i++) {
arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
}
System.out.println("插入排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
insertSort(arr); //调用插入排序算法
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
//System.out.println(Arrays.toString(arr));
}
//插入排序
public static void insertSort(int[] arr) {
int insertVal = 0;
int insertIndex = 0;
//使用for循环来把代码简化
for(int i = 1; i < arr.length; i++) {
//定义待插入的数
insertVal = arr[i];
insertIndex = i - 1; // 即arr[1]的前面这个数的下标
// 给insertVal 找到插入的位置
// 说明
// 1. insertIndex >= 0 保证在给insertVal 找插入位置,不越界
// 2. insertVal < arr[insertIndex] 待插入的数,还没有找到插入位置
// 3. 就需要将 arr[insertIndex] 后移
while (insertIndex >= 0 && insertVal < arr[insertIndex]) {
arr[insertIndex + 1] = arr[insertIndex];// arr[insertIndex]
insertIndex--;
}
// 当退出while循环时,说明插入的位置找到, insertIndex + 1
// 举例:理解不了,我们一会 debug
//这里我们判断是否需要赋值
if(insertIndex + 1 != i) {
arr[insertIndex + 1] = insertVal;
}
//System.out.println("第"+i+"轮插入");
//System.out.println(Arrays.toString(arr));
}
}
}
归并排序
public class MergetSort {
public static void main(String[] args) {
//int arr[] = { 8, 4, 5, 7, 1, 3, 6, 2 }; //
//测试快排的执行速度
// 创建要给80000个的随机的数组
int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
}
System.out.println("排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
int temp[] = new int[arr.length]; //归并排序需要一个额外空间
mergeSort(arr, 0, arr.length - 1, temp);
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
//System.out.println("归并排序后=" + Arrays.toString(arr));
}
//分+合方法
public static void mergeSort(int[] arr, int left, int right, int[] temp) {
if(left < right) {
int mid = (left + right) / 2; //中间索引
//向左递归进行分解
mergeSort(arr, left, mid, temp);
//向右递归进行分解
mergeSort(arr, mid + 1, right, temp);
//合并
merge(arr, left, mid, right, temp);
}
}
//合并的方法
/**
*
* @param arr 排序的原始数组
* @param left 左边有序序列的初始索引
* @param mid 中间索引
* @param right 右边索引
* @param temp 做中转的数组
*/
public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
int i = left; // 初始化i, 左边有序序列的初始索引
int j = mid + 1; //初始化j, 右边有序序列的初始索引
int t = 0; // 指向temp数组的当前索引
//(一)
//先把左右两边(有序)的数据按照规则填充到temp数组
//直到左右两边的有序序列,有一边处理完毕为止
while (i <= mid && j <= right) {//继续
//如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
//即将左边的当前元素,填充到 temp数组
//然后 t++, i++
if(arr[i] <= arr[j]) {
temp[t] = arr[i];
t += 1;
i += 1;
} else { //反之,将右边有序序列的当前元素,填充到temp数组
temp[t] = arr[j];
t += 1;
j += 1;
}
}
//(二)
//把有剩余数据的一边的数据依次全部填充到temp
while( i <= mid) { //左边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[i];
t += 1;
i += 1;
}
while( j <= right) { //右边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[j];
t += 1;
j += 1;
}
//(三)
//将temp数组的元素拷贝到arr
//注意,并不是每次都拷贝所有
t = 0;
int tempLeft = left; //
//第一次合并 tempLeft = 0 , right = 1 // tempLeft = 2 right = 3 // tL=0 ri=3
//最后一次 tempLeft = 0 right = 7
while(tempLeft <= right) {
arr[tempLeft] = temp[t];
t += 1;
tempLeft += 1;
}
}
}
快速排序
public class QuickSort {
public static void main(String[] args) {
//int[] arr = {-9,78,0,23,-567,70, -1,900, 4561};
//测试快排的执行速度
// 创建要给80000个的随机的数组
int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
}
System.out.println("排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
quickSort(arr, 0, arr.length-1);
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
//System.out.println("arr=" + Arrays.toString(arr));
}
public static void quickSort(int[] arr,int left, int right) {
int l = left; //左下标
int r = right; //右下标
//pivot 中轴值
int pivot = arr[(left + right) / 2];
int temp = 0; //临时变量,作为交换时使用
//while循环的目的是让比pivot 值小放到左边
//比pivot 值大放到右边
while( l < r) {
//在pivot的左边一直找,找到大于等于pivot值,才退出
while( arr[l] < pivot) {
l += 1;
}
//在pivot的右边一直找,找到小于等于pivot值,才退出
while(arr[r] > pivot) {
r -= 1;
}
//如果l >= r说明pivot 的左右两的值,已经按照左边全部是
//小于等于pivot值,右边全部是大于等于pivot值
if( l >= r) {
break;
}
//交换
temp = arr[l];
arr[l] = arr[r];
arr[r] = temp;
//如果交换完后,发现这个arr[l] == pivot值 相等 r--, 前移
//因为这种情况实际上式privot和r指向的位置交换,也就是说privot就位了
//privot和他右边的元素都排好序了
if(arr[l] == pivot) {
r -= 1;
}
//如果交换完后,发现这个arr[r] == pivot值 相等 l++, 后移
if(arr[r] == pivot) {
l += 1;
}
}
// 如果 l == r, 必须l++, r--, 否则为出现栈溢出
//会出现死循环?
if (l == r) {
l += 1;
r -= 1;
}
//向左递归
if(left < r) {
quickSort(arr, left, r);
}
//向右递归
if(right > l) {
quickSort(arr, l, right);
}
}
}
基数排序
public class RadixSort {
public static void main(String[] args) {
int arr[] = { 53, 3, 542, 748, 14, 214};
// 80000000 * 11 * 4 / 1024 / 1024 / 1024 =3.3G
// int[] arr = new int[8000000];
// for (int i = 0; i < 8000000; i++) {
// arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
// }
System.out.println("排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
radixSort(arr);
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
System.out.println("基数排序后 " + Arrays.toString(arr));
}
//基数排序方法
public static void radixSort(int[] arr) {
//根据前面的推导过程,我们可以得到最终的基数排序代码
//1. 得到数组中最大的数的位数
int max = arr[0]; //假设第一数就是最大数
for(int i = 1; i < arr.length; i++) {
if (arr[i] > max) {
max = arr[i];
}
}
//得到最大数是几位数
int maxLength = (max + "").length();
//定义一个二维数组,表示10个桶, 每个桶就是一个一维数组
//说明
//1. 二维数组包含10个一维数组
//2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为arr.length
//3. 名明确,基数排序是使用空间换时间的经典算法
int[][] bucket = new int[10][arr.length];
//为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数
//可以这里理解
//比如:bucketElementCounts[0] , 记录的就是 bucket[0] 桶的放入数据个数
int[] bucketElementCounts = new int[10];
//这里我们使用循环将代码处理
for(int i = 0 , n = 1; i < maxLength; i++, n *= 10) {
//(针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位..
for(int j = 0; j < arr.length; j++) {
//取出每个元素的对应位的值
int digitOfElement = arr[j] / n % 10;
//放入到对应的桶中
bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
bucketElementCounts[digitOfElement]++;
}
//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
int index = 0;
//遍历每一桶,并将桶中是数据,放入到原数组
for(int k = 0; k < bucketElementCounts.length; k++) {
//如果桶中,有数据,我们才放入到原数组
if(bucketElementCounts[k] != 0) {
//循环该桶即第k个桶(即第k个一维数组), 放入
for(int l = 0; l < bucketElementCounts[k]; l++) {
//取出元素放入到arr
arr[index++] = bucket[k][l];
}
}
//第i+1轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
bucketElementCounts[k] = 0;
}
//System.out.println("第"+(i+1)+"轮,对个位的排序处理 arr =" + Arrays.toString(arr));
}
}
}
选择排序
public class SelectSort {
public static void main(String[] args) {
//int [] arr = {101, 34, 119, 1, -1, 90, 123};
//创建要给80000个的随机的数组
int[] arr = new int[80000];
for (int i = 0; i < 80000; i++) {
arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
}
System.out.println("排序前");
//System.out.println(Arrays.toString(arr));
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
selectSort(arr);
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
//System.out.println("排序后");
//System.out.println(Arrays.toString(arr));
}
//选择排序
public static void selectSort(int[] arr) {
//在推导的过程,我们发现了规律,因此,可以使用for来解决
//选择排序时间复杂度是 O(n^2)
for (int i = 0; i < arr.length - 1; i++) {
int minIndex = i;
int min = arr[i];
for (int j = i + 1; j < arr.length; j++) {
if (min > arr[j]) { // 说明假定的最小值,并不是最小
min = arr[j]; // 重置min
minIndex = j; // 重置minIndex
}
}
// 将最小值,放在arr[0], 即交换
if (minIndex != i) {
arr[minIndex] = arr[i];
arr[i] = min;
}
//System.out.println("第"+(i+1)+"轮后~~");
//System.out.println(Arrays.toString(arr));// 1, 34, 119, 101
}
}
}
希尔排序
public class ShellSort {
public static void main(String[] args) {
//int[] arr = { 8, 9, 1, 7, 2, 3, 5, 4, 6, 0 };
// 创建要给80000个的随机的数组
int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
}
System.out.println("排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
//shellSort(arr); //交换式
shellSort2(arr);//移位方式
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
//System.out.println(Arrays.toString(arr));
}
// 使用逐步推导的方式来编写希尔排序
// 希尔排序时, 对有序序列在插入时采用交换法,
// 思路(算法) ===> 代码
public static void shellSort(int[] arr) {
int temp = 0;
int count = 0;
// 根据前面的逐步分析,使用循环处理
for (int gap = arr.length / 2; gap > 0; gap /= 2) {
for (int i = gap; i < arr.length; i++) {
// 遍历各组中所有的元素(共gap组,每组有个元素), 步长gap
for (int j = i - gap; j >= 0; j -= gap) {
// 如果当前元素大于加上步长后的那个元素,说明交换
if (arr[j] > arr[j + gap]) {
temp = arr[j];
arr[j] = arr[j + gap];
arr[j + gap] = temp;
}
}
}
//System.out.println("希尔排序第" + (++count) + "轮 =" + Arrays.toString(arr));
}
}
//对交换式的希尔排序进行优化->移位法
public static void shellSort2(int[] arr) {
// 增量gap, 并逐步的缩小增量
for (int gap = arr.length / 2; gap > 0; gap /= 2) {
// 从第gap个元素,逐个对其所在的组进行直接插入排序
for (int i = gap; i < arr.length; i++) {
int j = i;
int temp = arr[j];
if (arr[j] < arr[j - gap]) {
while (j - gap >= 0 && temp < arr[j - gap]) {
//移动
arr[j] = arr[j-gap];
j -= gap;
}
//当退出while后,就给temp找到插入的位置
arr[j] = temp;
}
}
}
}
}