项目地址:https://github.com/tensorflow/models
这次可以和大家分享的是Tensorflow Object Detection API的简单使用方法,以SSD+MobileNetv2的测试以及训练来举例,尽量以简单的语言描述Tensorflow Object Detection API的使用方法。
Step1:环境配置
需要的环境可以参考installation.md,但是里面没有写win10的配置方法,win10下我还是用Anaconda来配置
# 创建虚拟环境
conda create -n ssd python=3.6
# 激活环境
conda activate ssd
# 配置环境
conda install tensorflow-gpu==1.15.0
conda install Cython
conda install contextlib2
conda install pillow
conda install lxml
conda install jupyter
conda install matplotlib
安装了以上的包之后,还有最后一步需要安装pycocotools,不安装这个是没有办法启动训练程序的
具体win10下pycocotools的安装方法可以参考“win10安装pycocotools”
Step2:使用Protoc生成代码
下载好项目之后,cd到D:\...\tensorflow\models\research这样的路径下(根据自己情况修改)
同时准备好protoc工具
protoc下载地址:链接:https://pan.baidu.com/s/1FJsrFVYBtG-cT6mnuKznOw 提取码:wrtb
找到protoc的路径,执行命令:
D:/.../bin/protoc object_detection/protos/*.proto --python_out=.
Step3:设置路径
在Anaconda文件夹中env/ssd/Lib/site-packages/路径下(根据自己情况修改)
新建一个txt文件并改名为tensorflow_model.pth
内容添加为tensorflow中文件夹的路径(根据自己情况修改)
D:\python\tensorflow\models\research
D:\python\tensorflow\models\research\slim
D:\python\tensorflow\models\research\object_detection
Step4:测试环境是否配置成功
python object_detection/builders/model_builder_test.py
Step5:检测一张图片
import os
import sys
import tarfile
import cv2 as cv
import numpy as np
import tensorflow as tf
from utils import label_map_util
from utils import visualization_utils as vis_util
MODEL_NAME = 'ssd_mobilenet_v2_coco_2018_03_29' # 预训练模型的路径,不用解压
MODEL_FILE = 'D:/python/tensorflow/' + MODEL_NAME + '.tar.gz'
PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb'
PATH_TO_LABELS = os.path.join('D:/python/tensorflow/models/research/object_detection/data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90 # coco数据90类
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categorys = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
categorys_index = label_map_util.create_category_index(categorys)
def load_image_into_numpy(image):
(im_w, im_h) = image.size
return np.array(image.getdata()).reshape(im_h, im_w, 3).astype(np.uint8)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image = cv.imread("D:/python/tensorflow/models/research/object_detection/test_images/image3.jpg")
print(image.shape)
image_np_expanded = np.expand_dims(image, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores= detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = sess.run([boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(boxes),
np.squeeze(classes.astype(np.int32)),
np.squeeze(scores),
categorys_index,
use_normalized_coordinates=True,
line_thickness=4
)
cv.namedWindow("enhanced", 0)
cv.resizeWindow("enhanced", 640, 750)
cv.imshow("enhanced", image)
cv.waitKey(0)
cv.destroyAllWindows()
这就是检测一张图片的代码,里面用到了opencv读图,没有的话可以用pip安装一下,注意不要使用conda install
Step6:生成VOC2007的TF-Record
准备好VOC2007的数据集放在合适的路径下,这里我用训练集来举例生成TF-Record
python object_detection/dataset_tools/create_pascal_tf_record.py
--label_map_path=D:/tensorflow/dataset/pascal_label_map.pbtxt
--data_dir=D:/tensorflow/dataset/VOCdevkit
--year=VOC2007
--set=train
--output_path=D:/tensorflow/dataset/tfrecord/pascal_train.record
Step7:修改配置文件
配置文件路径:\...\research\object_detection\samples\configs\ssd_mobilenet_v2_coco.config
修改1:class的数目(coco的90修改成voc的20)
根据文件提示ctrl+F搜索"PATH_TO_BE_CONFIGURED" ,将所有这个字段的地方都修改成相应路径
修改2:预训练权重路径fine_tune_checkpoint: (解压指向model.ckpt)
修改3:修改train_input_reader和val_input_reader,修改成数据集的路径
train_input_reader: {
tf_record_input_reader {
input_path: "D:/python/tensorflow/dataset/output/pascal_train.record"
}
label_map_path: "D:/python/tensorflow/dataset/output//pascal_label_map.pbtxt"
}
Step8:启动训练
python object_detection/model_main.py
--pipeline_config_path=D:/python/tensorflow/dataset/output/ssd_mobilenet_v2_coco.config
--model_dir=D:\python\tensorflow\dataset\output\model --num_train_steps=10
--num_eval_steps=5
--alsologtostderr