Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Given nums = [1,3,-1,-3,5,3,6,7]
, and k = 3.
Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as [3,3,5,5,6,7]
.
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
Follow up:
Could you solve it in linear time?
class Solution {
public:
vector maxSlidingWindow(vector& nums, int k) {
vector result;
if (nums.empty())
return result;
multiset> que;
for (int i = 0; i < k; i++)
que.insert(nums[i]);
result.push_back(*que.begin());
for (int shift = 1; shift <= nums.size() - k; shift++) {
que.erase(que.find(nums[shift-1]));
que.insert(nums[k+shift-1]);
result.push_back(*que.begin());
}
return result;
}
};