爬取前程无忧职位信息

一主题网络爬虫设计方案

1.主题式网络爬虫名称:爬取前程无忧职位信息

2.主题式网络爬虫爬取的内容

本爬虫就要爬取公司名称,工作地点,薪资,学历,工作经验,招聘人数,公司规模,公司类型,公司福利和发布时间。

3.主题式网络爬虫设计方案概述

实验思路:爬取数据,数据清洗,数据可视化。

二.主题页面结构的结构特征分析

打开前程无忧,找到职位搜索,点右键检查元素。

爬取前程无忧职位信息_第1张图片

爬取信息,储存在Excel中

import urllib.request
import xlwt
import re
import urllib.parse
#import time
header={
        'Host':'search.51job.com',
        'Upgrade-Insecure-Requests':'1',
        'User-Agent':'MOzilla/5.0(Windows NT 10.0;Win64; x64) AppleWebkit/537.36(KHTML,like Gecko) chrome/78.0.3904.108 safari/537.36'
        }
def getfront(page,item):   #page是页数,item是输入的字符串,见后文
    result = urllib.parse.quote(item)   #先把字符串转成十六进制编码
    ur1 = result+',2,'+str(page)+'.html'
    ur2 = 'https://search.51job.com/list/000000,000000,0000,00,9,99,'
    res = ur2+ur1
    a = urllib.request.urlopen(res)
    html = a.read().decode('gbk')   #读取源代码并转为unicode
    return html
def getInformation(html):
    reg = re.compile(r'class="t1 ">.*? (.*?).*?(.*?).*?(.*?).*?',re.S)#匹配换行符
    items=re.findall(reg,html)
    return items
#新建表格空间
excel1 = xlwt.Workbook()
# 设置单元格格式
sheet1 = excel1.add_sheet('Job', cell_overwrite_ok=True)
sheet1.write(0, 0, '序号')
sheet1.write(0, 1, '职位')
sheet1.write(0, 2, '公司名称')
sheet1.write(0, 3, '公司地点')
sheet1.write(0, 4, '公司性质')
sheet1.write(0, 5, '薪资')
sheet1.write(0, 6, '学历要求')
sheet1.write(0, 7, '工作经验')
sheet1.write(0, 8, '公司规模')
sheet1.write(0, 9, '公司类型')
sheet1.write(0, 10,'公司福利')
sheet1.write(0, 11,'发布时间')
number = 1
item = input()
for j in range(1,10000):   #页数自己随便改
    try:
        print("正在爬取第"+str(j)+"页数据...")
        html = getfront(j,item)      #调用获取网页原码
        for i in getInformation(html):
            try:
                url1 = i[1]          #职位网址
                res1 = urllib.request.urlopen(url1).read().decode('gbk')
                company = re.findall(re.compile(r'
.*?

.*?

.*?

.*?',re.S),res1) job_need = re.findall(re.compile(r'

.*?  |  (.*?)  |  (.*?)  |  .*?

',re.S),res1) welfare = re.findall(re.compile(r'(.*?)',re.S),res1) print(i[0],i[2],i[4],i[5],company[0][0],job_need[2][0],job_need[1][0],company[0][1],company[0][2],welfare,i[6]) sheet1.write(number,0,number) sheet1.write(number,1,i[0]) sheet1.write(number,2,i[2]) sheet1.write(number,3,i[4]) sheet1.write(number,4,company[0][0]) sheet1.write(number,5,i[5]) sheet1.write(number,6,job_need[1][0]) sheet1.write(number,7,job_need[2][0]) sheet1.write(number,8,company[0][1]) sheet1.write(number,9,company[0][2]) sheet1.write(number,10,(" ".join(str(i) for i in welfare))) sheet1.write(number,11,i[6]) number+=1 excel1.save("51job.xls") time.sleep(0.3) #休息间隔,避免爬取海量数据时被误判为攻击,IP遭到封禁 except: pass except: pass

  

爬取前程无忧职位信息_第2张图片

 

 

 

数据清洗:

1.首先打开文件,出现有空值(NAN)的信息,直接删除整行,职位出错,及其他地方信息出错,如在学历中“召几人”,薪资单位不一致并保存到另一个文件。

爬取前程无忧职位信息_第3张图片

爬取前程无忧职位信息_第4张图片

#coding:utf-8
import pandas as pd
import re
#除此之外还要安装xlrd包

data = pd.read_excel(r'51job.xls',sheet_name='Job')
result = pd.DataFrame(data)
a = result.dropna(axis=0,how='any')
pd.set_option('display.max_rows',None)     #输出全部行,不省略
b = u'数据'
number = 1
li = a['职位']
for i in range(0,len(li)):
    try:
        if b in li[i]:
            #print(number,li[i])
            number+=1
        else:
            a = a.drop(i,axis=0)
    except:
        pass
    
b2= u'人'
li2 = a['学历要求']
for i in range(0,len(li2)):
    try:
        if b2 in li2[i]:
            #print(number,li2[i])
            number+=1
            a = a.drop(i,axis=0)
    except:
        pass

b3 =u'万/年'
b4 =u'千/月'
li3 = a['薪资']
#注释部分的print都是为了调试用的
for i in range(0,len(li3)):
    try:
        if b3 in li3[i]:
            x = re.findall(r'\d*\.?\d+',li3[i])
            #print(x)
            min_ = format(float(x[0])/12,'.2f')              #转换成浮点型并保留两位小数
            max_ = format(float(x[1])/12,'.2f')
            li3[i][1] = min_+'-'+max_+u'万/月'
        if b4 in li3[i]:
            x = re.findall(r'\d*\.?\d+',li3[i])
            #print(x)
            #input()
            min_ = format(float(x[0])/10,'.2f')
            max_ = format(float(x[1])/10,'.2f')
            li3[i][1] = str(min_+'-'+max_+'万/月')
        print(i,li3[i])

    except:
        pass

#保存到另一个文件
a.to_excel('51job2.xls', sheet_name='Job', index=False)

  

 

  

数据可视化:

绘制工作经验-薪资图、学历-薪资图、学历圆环图:

先打开文件,创建多个列表单独存放‘薪资’,‘学历要求’等信息。

file = pd.read_excel(r'51job2.xls',sheet_name='Job')
f = pd.DataFrame(file)
pd.set_option('display.max_rows',None)
add = f['公司地点']
sly = f['薪资']
edu = f['学历要求']
exp = f['工作经验']
address =[]
salary = []
education = []
experience = []
for i in range(0,len(f)):
    try:
        a = add[i].split('-')
        address.append(a[0])
        #print(address[i])
        s = re.findall(r'\d*\.?\d+',sly[i])
        s1= float(s[0])
        s2 =float(s[1])
        salary.append([s1,s2])
        #print(salary[i])
        education.append(edu[i])
        #print(education[i])
        experience.append(exp[i])
        #print(experience[i])
    except:
       pass
   
min_s=[]							#定义存放最低薪资的列表
max_s=[]							#定义存放最高薪资的列表
for i in range(0,len(experience)):
    min_s.append(salary[i][0])
    max_s.append(salary[i][0])

my_df = pd.DataFrame({'experience':experience, 'min_salay' : min_s, 'max_salay' : max_s})				#关联工作经验与薪资
data1 = my_df.groupby('experience').mean()['min_salay'].plot(kind='line')
plt.show()
my_df2 = pd.DataFrame({'education':education, 'min_salay' : min_s, 'max_salay' : max_s})				#关联学历与薪资
data2 = my_df2.groupby('education').mean()['min_salay'].plot(kind='line')
plt.show()
    
def get_edu(list):
    education2 = {}
    for i in set(list):
        education2[i] = list.count(i)
    return education2
dir1 = get_edu(education)
# print(dir1)

attr= dir1.keys()
value = dir1.values()
pie = Pie("学历要求")
pie.add("", attr, value, center=[50, 50], is_random=False, radius=[30, 75], rosetype='radius',
        is_legend_show=False, is_label_show=True,legend_orient='vertical')
pie.render('学历要求玫瑰图.html')

  爬取前程无忧职位信息_第5张图片爬取前程无忧职位信息_第6张图片

 

爬取前程无忧职位信息_第7张图片

所有代码,如下:

import urllib.request
import xlwt
import re
import urllib.parse
#import time
header={
        'Host':'search.51job.com',
        'Upgrade-Insecure-Requests':'1',
        'User-Agent':'MOzilla/5.0(Windows NT 10.0;Win64; x64) AppleWebkit/537.36(KHTML,like Gecko) chrome/78.0.3904.108 safari/537.36'
        }
def getfront(page,item):   #page是页数,item是输入的字符串,见后文
    result = urllib.parse.quote(item)   #先把字符串转成十六进制编码
    ur1 = result+',2,'+str(page)+'.html'
    ur2 = 'https://search.51job.com/list/000000,000000,0000,00,9,99,'
    res = ur2+ur1
    a = urllib.request.urlopen(res)
    html = a.read().decode('gbk')   #读取源代码并转为unicode
    return html
def getInformation(html):
    reg = re.compile(r'class="t1 ">.*? (.*?).*?(.*?).*?(.*?).*?',re.S)#匹配换行符
    items=re.findall(reg,html)
    return items
#新建表格空间
excel1 = xlwt.Workbook()
# 设置单元格格式
sheet1 = excel1.add_sheet('Job', cell_overwrite_ok=True)
sheet1.write(0, 0, '序号')
sheet1.write(0, 1, '职位')
sheet1.write(0, 2, '公司名称')
sheet1.write(0, 3, '公司地点')
sheet1.write(0, 4, '公司性质')
sheet1.write(0, 5, '薪资')
sheet1.write(0, 6, '学历要求')
sheet1.write(0, 7, '工作经验')
sheet1.write(0, 8, '公司规模')
sheet1.write(0, 9, '公司类型')
sheet1.write(0, 10,'公司福利')
sheet1.write(0, 11,'发布时间')
number = 1
item = input()
for j in range(1,10000):   #页数自己随便改
    try:
        print("正在爬取第"+str(j)+"页数据...")
        html = getfront(j,item)      #调用获取网页原码
        for i in getInformation(html):
            try:
                url1 = i[1]          #职位网址
                res1 = urllib.request.urlopen(url1).read().decode('gbk')
                company = re.findall(re.compile(r'
.*?

.*?

.*?

.*?',re.S),res1)
                job_need = re.findall(re.compile(r'

.*?  |  (.*?)  |  (.*?)  |  .*?

',re.S),res1)
                welfare = re.findall(re.compile(r'(.*?)',re.S),res1)
                print(i[0],i[2],i[4],i[5],company[0][0],job_need[2][0],job_need[1][0],company[0][1],company[0][2],welfare,i[6])
                sheet1.write(number,0,number)
                sheet1.write(number,1,i[0])
                sheet1.write(number,2,i[2])
                sheet1.write(number,3,i[4])
                sheet1.write(number,4,company[0][0])
                sheet1.write(number,5,i[5])
                sheet1.write(number,6,job_need[1][0])
                sheet1.write(number,7,job_need[2][0])
                sheet1.write(number,8,company[0][1])
                sheet1.write(number,9,company[0][2])
                sheet1.write(number,10,("  ".join(str(i) for i in welfare)))
                sheet1.write(number,11,i[6])
                number+=1
                excel1.save("51job.xls")
                time.sleep(0.3) #休息间隔,避免爬取海量数据时被误判为攻击,IP遭到封禁
            except:
                pass
    except:
        pass
#coding:utf-8
import pandas as pd
import re
#除此之外还要安装xlrd包
data = pd.read_excel(r'51job.xls',sheet_name='Job')
result = pd.DataFrame(data)
a = result.dropna(axis=0,how='any')
pd.set_option('display.max_rows',None)     #输出全部行,不省略
b = u'数据'
number = 1
li = a['职位']
for i in range(0,len(li)):
    try:
        if b in li[i]:
            #print(number,li[i])
            number+=1
        else:
            a = a.drop(i,axis=0)
    except:
        pass
   
b2= u'人'
li2 = a['学历要求']
for i in range(0,len(li2)):
    try:
        if b2 in li2[i]:
            #print(number,li2[i])
            number+=1
            a = a.drop(i,axis=0)
    except:
        pass
b3 =u'万/年'
b4 =u'千/月'
li3 = a['薪资']
#注释部分的print都是为了调试用的
for i in range(0,len(li3)):
    try:
        if b3 in li3[i]:
            x = re.findall(r'\d*\.?\d+',li3[i])
            #print(x)
            min_ = format(float(x[0])/12,'.2f')              #转换成浮点型并保留两位小数
            max_ = format(float(x[1])/12,'.2f')
            li3[i][1] = min_+'-'+max_+u'万/月'
        if b4 in li3[i]:
            x = re.findall(r'\d*\.?\d+',li3[i])
            #print(x)
            #input()
            min_ = format(float(x[0])/10,'.2f')
            max_ = format(float(x[1])/10,'.2f')
            li3[i][1] = str(min_+'-'+max_+'万/月')
        print(i,li3[i])
    except:
        pass
#保存到另一个文件
a.to_excel('51job2.xls', sheet_name='Job', index=False)
file = pd.read_excel(r'51job2.xls',sheet_name='Job')
f = pd.DataFrame(file)
pd.set_option('display.max_rows',None)
add = f['公司地点']
sly = f['薪资']
edu = f['学历要求']
exp = f['工作经验']
address =[]
salary = []
education = []
experience = []
for i in range(0,len(f)):
    try:
        a = add[i].split('-')
        address.append(a[0])
        #print(address[i])
        s = re.findall(r'\d*\.?\d+',sly[i])
        s1= float(s[0])
        s2 =float(s[1])
        salary.append([s1,s2])
        #print(salary[i])
        education.append(edu[i])
        #print(education[i])
        experience.append(exp[i])
        #print(experience[i])
    except:
       pass
  
min_s=[]       #定义存放最低薪资的列表
max_s=[]       #定义存放最高薪资的列表
for i in range(0,len(experience)):
    min_s.append(salary[i][0])
    max_s.append(salary[i][0])
my_df = pd.DataFrame({'experience':experience, 'min_salay' : min_s, 'max_salay' : max_s})    #关联工作经验与薪资
data1 = my_df.groupby('experience').mean()['min_salay'].plot(kind='line')
plt.show()
my_df2 = pd.DataFrame({'education':education, 'min_salay' : min_s, 'max_salay' : max_s})    #关联学历与薪资
data2 = my_df2.groupby('education').mean()['min_salay'].plot(kind='line')
plt.show()
   
def get_edu(list):
    education2 = {}
    for i in set(list):
        education2[i] = list.count(i)
    return education2
dir1 = get_edu(education)
# print(dir1)
attr= dir1.keys()
value = dir1.values()
pie = Pie("学历要求")
pie.add("", attr, value, center=[50, 50], is_random=False, radius=[30, 75], rosetype='radius',
        is_legend_show=False, is_label_show=True,legend_orient='vertical')
pie.render('学历要求玫瑰图.html')

  

 

总结:

1.经过对主题数据的分析与可视化,可以得到哪些结论?

数据可视化可以让我们对网页的内容更清晰,更直观。

2.小结

经过这段时间的学习,我认识到学Python太难了,由于英语不扎实,经常要查找英语单词,在find_all上徘徊了很久,运行不了,最后还是没搞懂,今后需要更多时间投入。

 
 

你可能感兴趣的:(爬取前程无忧职位信息)