MPI群通信与矩阵乘法的Fox算法实现

原本以为,MPI天生只能在Linux上运行。但这次却发现了Intel MPI Library 这个好用的东西。基本不需要设置,安上之后,用自己能登录windows的帐号和密码注册就行了。虽然不是局域网上的机器,但也可以让我的双核CPU达到100%(平时开个Matlab什么的都才是50%,软件优化真是关键啊)。

FOX算法有一些恶心的要求:输入的矩阵必须是方阵,而且进程必须为平方数,方阵必须能均匀划分给每个进程。其实方阵的条件并不一定必须,只是会增加编程复杂性。

MPI中,虽然最精华的就6条语句,但仅用这6条,还是比较麻烦的。使用一些高级语句,能提高程序性能或是简化代码。

MPI_Bcast,这个是必须要提的。能把这样的语句 if (task_id == root) { send to child_id } else { recieve from root} 仅用个bcast就替换了。

MPI_Isend/MPI_Irecv是异步发送和接收的语句,显然比MPI_Send/MPI_Recv这样的阻塞语句更可能提高性能。另外,还可以避免循环死锁。当然,避免循环死锁的方法还有使用奇偶法、MPI_Sendrecv等。

虽然,理解MPI_Cart_create等一系列的笛卡尔结构操作还是有些难度的,但却是十分有用的进程逻辑功能划分方法。特别在FOX算法中,每行是个通信子域,每列也是。这样就会有n+n个子域(尽管有划分重叠),每个域的进程都仅与域中的其它进程有信息交换,这样仅用bcast一语就能传完数据。

以下是代码。比较简单。就不说明了。

//  MatrixMulFox.cpp
//  Jarod 2007.12.3

#include 
" mpi.h "

#include 
< algorithm >
#include 
< fstream >
#include 
< cmath >

const   int  root_id  =   0 ;
const   int  max_procs_size  =   16 ;

int  main( int  argc, char   * argv[])
{
    
double start_time, end_time, time;
    
int procs_id, procs_size;
    MPI_Status status;
    MPI_Request reqSend, reqRecv;
    MPI_Init(
&argc,&argv);
    start_time 
= MPI_Wtime();
    MPI_Comm_size(MPI_COMM_WORLD,
&procs_size);
    MPI_Comm_rank(MPI_COMM_WORLD,
&procs_id);

    
// 参数检查
    int N=0;
    
{
        
for (int i=1; i<argc; ++i ) {
            
char * pos =strstr(argv[i], "-N=");
            
if ( pos!=NULL) {
                sscanf(pos, 
"-N=%d"&N);
                
break;
            }

        }

    }


    
const int procs_size_sqrt = floor(sqrt(static_cast<double>(procs_size)));
    
const int n = N / procs_size_sqrt;
    
const int n_sqr = n*n;

    
if (procs_size<4 || procs_size> max_procs_size) {
        printf(
"The fox algorithm requires at least 4 processors and at most %d processors. ",
               max_procs_size);
        MPI_Finalize();
        
return 0;
    }

    
if (procs_size_sqrt*procs_size_sqrt != procs_size ) {
        printf(
"The number of process must be a square. ");
        MPI_Finalize();
        
return 0;
    }

    
if (N % procs_size_sqrt !=0{
        printf(
"N mod procs_size_sqrt !=0  ");
        MPI_Finalize();
        
return 0;
    }


    
//初始化矩阵
    int * A = new int[n_sqr];
    
int * B = new int[n_sqr];
    
int * C = new int[n_sqr];
    
int * T = new int[n_sqr];

    
for (int i=0; i<n; ++i)
        
for (int j=0; j<n; ++j) {
            A[i
*n+j] = (i+j)*procs_id;
            B[i
*n+j] = (i-j)*procs_id;
            C[i
*n+j] = 0;
        }


    
//输出矩阵
    printf("A on procs %d :  ", procs_id);
    
for (int i=0; i<n; ++i) {
        
for (int j=0; j<n; ++j) {
            printf(
"%5d",A[i*n+j]);
        }

        printf(
" ");
    }


    printf(
"B on procs %d :  ", procs_id);
    
for (int i=0; i<n; ++i) {
        
for (int j=0; j<n; ++j) {
            printf(
"%5d",B[i*n+j]);
        }

        printf(
" ");
    }


    
// 划分组, 建立子通信空间
    MPI_Comm cart_all, cart_row, cart_col;
    
int dims[2], periods[2];
    
int procs_cart_rank, procs_coords[2];
    dims[
0= dims[1= procs_size_sqrt;
    periods[
0= periods[1= true;
    MPI_Cart_create(MPI_COMM_WORLD, 
2, dims, periods, false&cart_all);
    MPI_Comm_rank(cart_all, 
&procs_cart_rank);
    MPI_Cart_coords(cart_all, procs_cart_rank,  
2, procs_coords);
    MPI_Comm_split(cart_all, procs_coords[
0], procs_coords[1], &cart_row);
    MPI_Comm_split(cart_all, procs_coords[
1], procs_coords[0], &cart_col);
    
int rank_cart_row, rank_cart_col;
    MPI_Comm_rank(cart_row, 
& rank_cart_row);
    MPI_Comm_rank(cart_col, 
& rank_cart_col);

    
// 计算并传递
    
    
for (int round = 0; round < procs_size_sqrt; ++ round) {

        MPI_Isend(B, n_sqr, MPI_INT, (procs_coords[
0- 1 + procs_size_sqrt) % procs_size_sqrt, 
                  
1, cart_col, &reqSend);

        
int broader = (round + procs_coords[0]) % procs_size_sqrt;
        
if (broader == procs_coords[1]) std::copy(A,A+n_sqr,T);

        MPI_Bcast(T, n_sqr, MPI_INT, broader , cart_row);

        
for (int row=0; row<n; ++row)
            
for (int col=0; col<n; ++col)
                
for (int k=0; k<n; ++k) {
                    C[row
*n+col] += T[row*n+k]*B[k*n+col];
                }

        
        MPI_Wait(
&reqSend, &status);
        MPI_Recv(T, n_sqr,  MPI_INT, (procs_coords[
0+ 1% procs_size_sqrt
                          , 
1, cart_col, &status);
        std::copy(T,T
+n_sqr,B);

    }


    
//输出结果
    printf("C on procs %d :  ", procs_id);
    
for (int i=0; i<n; ++i) {
        
for (int j=0; j<n; ++j) {
            printf(
"%5d",C[i*n+j]);
        }

        printf(
" ");
    }

    
    

    
// 释放
    MPI_Comm_free(&cart_col);
    MPI_Comm_free(
&cart_row);
    MPI_Comm_free(
&cart_all);
    delete []A;
    delete []B;
    delete []C;
    delete []T;
    end_time 
= MPI_Wtime();
    MPI_Finalize();
    printf(
"task %d consumed %lf seconds ", procs_id, end_time-start_time);

    
return 0;
}

你可能感兴趣的:(浅尝辄止,算法,delete,matlab,algorithm,library,windows)