转载来源:http://coolshell.cn/articles/11564.html
TCP是一个巨复杂的协议,因为他要解决很多问题,而这些问题又带出了很多子问题和阴暗面。所以学习TCP本身是个比较痛苦的过程,但对于学习的过程却能让人有很多收获。关于TCP这个协议的细节,我还是推荐你去看W.Richard Stevens的《TCP/IP 详解 卷1:协议》(当然,你也可以去读一下RFC793以及后面N多的RFC)。另外,本文我会使用英文术语,这样方便你通过这些英文关键词来查找相关的技术文档。
之所以想写这篇文章,目的有三个,
所以,本文不会面面俱到,只是对TCP协议、算法和原理的科普。
我本来只想写一个篇幅的文章的,但是TCP真TMD的复杂,比C++复杂多了,这30多年来,各种优化变种争论和修改。所以,写着写着就发现只有砍成两篇。
废话少说,首先,我们需要知道TCP在网络OSI的七层模型中的第四层——Transport层,IP在第三层——Network层,ARP在第二层——Data Link层,在第二层上的数据,我们叫Frame,在第三层上的数据叫Packet,第四层的数据叫Segment。
首先,我们需要知道,我们程序的数据首先会打到TCP的Segment中,然后TCP的Segment会打到IP的Packet中,然后再打到以太网Ethernet的Frame中,传到对端后,各个层解析自己的协议,然后把数据交给更高层的协议处理。
接下来,我们来看一下TCP头的格式
你需要注意这么几点:
关于其它的东西,可以参看下面的图示
(图片来源)
其实,网络上的传输是没有连接的,包括TCP也是一样的。而TCP所谓的“连接”,其实只不过是在通讯的双方维护一个“连接状态”,让它看上去好像有连接一样。所以,TCP的状态变换是非常重要的。
下面是:“TCP协议的状态机”(图片来源) 和 “TCP建链接”、“TCP断链接”、“传数据” 的对照图,我把两个图并排放在一起,这样方便在你对照着看。另外,下面这两个图非常非常的重要,你一定要记牢。(吐个槽:看到这样复杂的状态机,就知道这个协议有多复杂,复杂的东西总是有很多坑爹的事情,所以TCP协议其实也挺坑爹的)
很多人会问,为什么建链接要3次握手,断链接需要4次挥手?
两端同时断连接(图片来源)
另外,有几个事情需要注意一下:
Again,使用tcp_tw_reuse和tcp_tw_recycle来解决TIME_WAIT的问题是非常非常危险的,因为这两个参数违反了TCP协议(RFC 1122)
其实,TIME_WAIT表示的是你主动断连接,所以,这就是所谓的“不作死不会死”。试想,如果让对端断连接,那么这个破问题就是对方的了,呵呵。另外,如果你的服务器是于HTTP服务器,那么设置一个HTTP的KeepAlive有多重要(浏览器会重用一个TCP连接来处理多个HTTP请求),然后让客户端去断链接(你要小心,浏览器可能会非常贪婪,他们不到万不得已不会主动断连接)。
下图是我从Wireshark中截了个我在访问coolshell.cn时的有数据传输的图给你看一下,SeqNum是怎么变的。(使用Wireshark菜单中的Statistics ->Flow Graph… )
你可以看到,SeqNum的增加是和传输的字节数相关的。上图中,三次握手后,来了两个Len:1440的包,而第二个包的SeqNum就成了1441。然后第一个ACK回的是1441,表示第一个1440收到了。
注意:如果你用Wireshark抓包程序看3次握手,你会发现SeqNum总是为0,不是这样的,Wireshark为了显示更友好,使用了Relative SeqNum——相对序号,你只要在右键菜单中的protocol preference 中取消掉就可以看到“Absolute SeqNum”了
TCP要保证所有的数据包都可以到达,所以,必需要有重传机制。
注意,接收端给发送端的Ack确认只会确认最后一个连续的包,比如,发送端发了1,2,3,4,5一共五份数据,接收端收到了1,2,于是回ack 3,然后收到了4(注意此时3没收到),此时的TCP会怎么办?我们要知道,因为正如前面所说的,SeqNum和Ack是以字节数为单位,所以ack的时候,不能跳着确认,只能确认最大的连续收到的包,不然,发送端就以为之前的都收到了。
一种是不回ack,死等3,当发送方发现收不到3的ack超时后,会重传3。一旦接收方收到3后,会ack 回 4——意味着3和4都收到了。
但是,这种方式会有比较严重的问题,那就是因为要死等3,所以会导致4和5即便已经收到了,而发送方也完全不知道发生了什么事,因为没有收到Ack,所以,发送方可能会悲观地认为也丢了,所以有可能也会导致4和5的重传。
对此有两种选择:
这两种方式有好也有不好。第一种会节省带宽,但是慢,第二种会快一点,但是会浪费带宽,也可能会有无用功。但总体来说都不好。因为都在等timeout,timeout可能会很长(在下篇会说TCP是怎么动态地计算出timeout的)
于是,TCP引入了一种叫Fast Retransmit 的算法,不以时间驱动,而以数据驱动重传。也就是说,如果,包没有连续到达,就ack最后那个可能被丢了的包,如果发送方连续收到3次相同的ack,就重传。Fast Retransmit的好处是不用等timeout了再重传。
比如:如果发送方发出了1,2,3,4,5份数据,第一份先到送了,于是就ack回2,结果2因为某些原因没收到,3到达了,于是还是ack回2,后面的4和5都到了,但是还是ack回2,因为2还是没有收到,于是发送端收到了三个ack=2的确认,知道了2还没有到,于是就马上重转2。然后,接收端收到了2,此时因为3,4,5都收到了,于是ack回6。示意图如下:
Fast Retransmit只解决了一个问题,就是timeout的问题,它依然面临一个艰难的选择,就是重转之前的一个还是重装所有的问题。对于上面的示例来说,是重传#2呢还是重传#2,#3,#4,#5呢?因为发送端并不清楚这连续的3个ack(2)是谁传回来的?也许发送端发了20份数据,是#6,#10,#20传来的呢。这样,发送端很有可能要重传从2到20的这堆数据(这就是某些TCP的实际的实现)。可见,这是一把双刃剑。
另外一种更好的方式叫:Selective Acknowledgment (SACK)(参看RFC 2018),这种方式需要在TCP头里加一个SACK的东西,ACK还是Fast Retransmit的ACK,SACK则是汇报收到的数据碎版。参看下图:
这样,在发送端就可以根据回传的SACK来知道哪些数据到了,哪些没有到。于是就优化了Fast Retransmit的算法。当然,这个协议需要两边都支持。在 Linux下,可以通过tcp_sack参数打开这个功能(Linux 2.4后默认打开)。
这里还需要注意一个问题——接收方Reneging,所谓Reneging的意思就是接收方有权把已经报给发送端SACK里的数据给丢了。这样干是不被鼓励的,因为这个事会把问题复杂化了,但是,接收方这么做可能会有些极端情况,比如要把内存给别的更重要的东西。所以,发送方也不能完全依赖SACK,还是要依赖ACK,并维护Time-Out,如果后续的ACK没有增长,那么还是要把SACK的东西重传,另外,接收端这边永远不能把SACK的包标记为Ack。
注意:SACK会消费发送方的资源,试想,如果一个攻击者给数据发送方发一堆SACK的选项,这会导致发送方开始要重传甚至遍历已经发出的数据,这会消耗很多发送端的资源。详细的东西请参看《TCP SACK的性能权衡》
Duplicate SACK又称D-SACK,其主要使用了SACK来告诉发送方有哪些数据被重复接收了。RFC-2833里有详细描述和示例。下面举几个例子(来源于RFC-2833)
D-SACK使用了SACK的第一个段来做标志,
示例一:ACK丢包
下面的示例中,丢了两个ACK,所以,发送端重传了第一个数据包(3000-3499),于是接收端发现重复收到,于是回了一个SACK=3000-3500,因为ACK都到了4000意味着收到了4000之前的所有数据,所以这个SACK就是D-SACK——旨在告诉发送端我收到了重复的数据,而且我们的发送端还知道,数据包没有丢,丢的是ACK包。
1
2
3
4
5
6
7
|
Transmitted Received ACK Sent
Segment Segment (Including SACK Blocks)
3000-3499 3000-3499 3500 (ACK dropped)
3500-3999 3500-3999 4000 (ACK dropped)
3000-3499 3000-3499 4000, SACK=3000-3500
---------
|
示例二,网络延误
下面的示例中,网络包(1000-1499)被网络给延误了,导致发送方没有收到ACK,而后面到达的三个包触发了“Fast Retransmit算法”,所以重传,但重传时,被延误的包又到了,所以,回了一个SACK=1000-1500,因为ACK已到了3000,所以,这个SACK是D-SACK——标识收到了重复的包。
这个案例下,发送端知道之前因为“Fast Retransmit算法”触发的重传不是因为发出去的包丢了,也不是因为回应的ACK包丢了,而是因为网络延时了。
1
2
3
4
5
6
7
8
9
10
11
|
Transmitted Received ACK Sent
Segment Segment (Including SACK Blocks)
500-999 500-999 1000
1000-1499 (delayed)
1500-1999 1500-1999 1000, SACK=1500-2000
2000-2499 2000-2499 1000, SACK=1500-2500
2500-2999 2500-2999 1000, SACK=1500-3000
1000-1499 1000-1499 3000
1000-1499 3000, SACK=1000-1500
---------
|
可见,引入了D-SACK,有这么几个好处:
1)可以让发送方知道,是发出去的包丢了,还是回来的ACK包丢了。
2)是不是自己的timeout太小了,导致重传。
3)网络上出现了先发的包后到的情况(又称reordering)
4)网络上是不是把我的数据包给复制了。
知道这些东西可以很好得帮助TCP了解网络情况,从而可以更好的做网络上的流控。
Linux下的tcp_dsack参数用于开启这个功能(Linux 2.4后默认打开)
这篇文章是下篇,所以如果你对TCP不熟悉的话,还请你先看看上篇《TCP的那些事儿(上)》 上篇中,我们介绍了TCP的协议头、状态机、数据重传中的东西。但是TCP要解决一个很大的事,那就是要在一个网络根据不同的情况来动态调整自己的发包的速度,小则让自己的连接更稳定,大则让整个网络更稳定。在你阅读下篇之前,你需要做好准备,本篇文章有好些算法和策略,可能会引发你的各种思考,让你的大脑分配很多内存和计算资源,所以,不适合在厕所中阅读。
从前面的TCP重传机制我们知道Timeout的设置对于重传非常重要。
而且,这个超时时间在不同的网络的情况下,根本没有办法设置一个死的值。只能动态地设置。 为了动态地设置,TCP引入了RTT——Round Trip Time,也就是一个数据包从发出去到回来的时间。这样发送端就大约知道需要多少的时间,从而可以方便地设置Timeout——RTO(Retransmission TimeOut),以让我们的重传机制更高效。 听起来似乎很简单,好像就是在发送端发包时记下t0,然后接收端再把这个ack回来时再记一个t1,于是RTT = t1 – t0。没那么简单,这只是一个采样,不能代表普遍情况。
RFC793 中定义的经典算法是这样的:
1)首先,先采样RTT,记下最近好几次的RTT值。
2)然后做平滑计算SRTT( Smoothed RTT)。公式为:(其中的 α 取值在0.8 到 0.9之间,这个算法英文叫Exponential weighted moving average,中文叫:加权移动平均)
SRTT = ( α * SRTT ) + ((1- α) * RTT)
3)开始计算RTO。公式如下:
RTO = min [ UBOUND, max [ LBOUND, (β * SRTT) ] ]
其中:
但是上面的这个算法在重传的时候会出有一个终极问题——你是用第一次发数据的时间和ack回来的时间做RTT样本值,还是用重传的时间和ACK回来的时间做RTT样本值?
这个问题无论你选那头都是按下葫芦起了瓢。 如下图所示:
所以1987年的时候,搞了一个叫Karn / Partridge Algorithm,这个算法的最大特点是——忽略重传,不把重传的RTT做采样(你看,你不需要去解决不存在的问题)。
但是,这样一来,又会引发一个大BUG——如果在某一时间,网络闪动,突然变慢了,产生了比较大的延时,这个延时导致要重转所有的包(因为之前的RTO很小),于是,因为重转的不算,所以,RTO就不会被更新,这是一个灾难。 于是Karn算法用了一个取巧的方式——只要一发生重传,就对现有的RTO值翻倍(这就是所谓的 Exponential backoff),很明显,这种死规矩对于一个需要估计比较准确的RTT也不靠谱。
前面两种算法用的都是“加权移动平均”,这种方法最大的毛病就是如果RTT有一个大的波动的话,很难被发现,因为被平滑掉了。所以,1988年,又有人推出来了一个新的算法,这个算法叫Jacobson / Karels Algorithm(参看RFC6289)。这个算法引入了最新的RTT的采样和平滑过的SRTT的差距做因子来计算。 公式如下:(其中的DevRTT是Deviation RTT的意思)
SRTT = SRTT + α (RTT – SRTT) —— 计算平滑RTT
DevRTT = (1-β)*DevRTT + β*(|RTT-SRTT|) ——计算平滑RTT和真实的差距(加权移动平均)
RTO= µ * SRTT + ∂ *DevRTT —— 神一样的公式
(其中:在Linux下,α = 0.125,β = 0.25, μ = 1,∂ = 4 ——这就是算法中的“调得一手好参数”,nobody knows why, it just works…) 最后的这个算法在被用在今天的TCP协议中(Linux的源代码在:tcp_rtt_estimator)。
需要说明一下,如果你不了解TCP的滑动窗口这个事,你等于不了解TCP协议。我们都知道,TCP必需要解决的可靠传输以及包乱序(reordering)的问题,所以,TCP必需要知道网络实际的数据处理带宽或是数据处理速度,这样才不会引起网络拥塞,导致丢包。
所以,TCP引入了一些技术和设计来做网络流控,Sliding Window是其中一个技术。 前面我们说过,TCP头里有一个字段叫Window,又叫Advertised-Window,这个字段是接收端告诉发送端自己还有多少缓冲区可以接收数据。于是发送端就可以根据这个接收端的处理能力来发送数据,而不会导致接收端处理不过来。 为了说明滑动窗口,我们需要先看一下TCP缓冲区的一些数据结构:
上图中,我们可以看到:
于是:
下面我们来看一下发送方的滑动窗口示意图:
(图片来源)
上图中分成了四个部分,分别是:(其中那个黑模型就是滑动窗口)
下面是个滑动后的示意图(收到36的ack,并发出了46-51的字节):
下面我们来看一个接受端控制发送端的图示:
(图片来源)
上图,我们可以看到一个处理缓慢的Server(接收端)是怎么把Client(发送端)的TCP Sliding Window给降成0的。此时,你一定会问,如果Window变成0了,TCP会怎么样?是不是发送端就不发数据了?是的,发送端就不发数据了,你可以想像成“Window Closed”,那你一定还会问,如果发送端不发数据了,接收方一会儿Window size 可用了,怎么通知发送端呢?
解决这个问题,TCP使用了Zero Window Probe技术,缩写为ZWP,也就是说,发送端在窗口变成0后,会发ZWP的包给接收方,让接收方来ack他的Window尺寸,一般这个值会设置成3次,第次大约30-60秒(不同的实现可能会不一样)。如果3次过后还是0的话,有的TCP实现就会发RST把链接断了。
注意:只要有等待的地方都可能出现DDoS攻击,Zero Window也不例外,一些攻击者会在和HTTP建好链发完GET请求后,就把Window设置为0,然后服务端就只能等待进行ZWP,于是攻击者会并发大量的这样的请求,把服务器端的资源耗尽。(关于这方面的攻击,大家可以移步看一下Wikipedia的SockStress词条)
另外,Wireshark中,你可以使用tcp.analysis.zero_window来过滤包,然后使用右键菜单里的follow TCP stream,你可以看到ZeroWindowProbe及ZeroWindowProbeAck的包。
Silly Window Syndrome翻译成中文就是“糊涂窗口综合症”。正如你上面看到的一样,如果我们的接收方太忙了,来不及取走Receive Windows里的数据,那么,就会导致发送方越来越小。到最后,如果接收方腾出几个字节并告诉发送方现在有几个字节的window,而我们的发送方会义无反顾地发送这几个字节。
要知道,我们的TCP+IP头有40个字节,为了几个字节,要达上这么大的开销,这太不经济了。
另外,你需要知道网络上有个MTU,对于以太网来说,MTU是1500字节,除去TCP+IP头的40个字节,真正的数据传输可以有1460,这就是所谓的MSS(Max Segment Size)注意,TCP的RFC定义这个MSS的默认值是536,这是因为 RFC 791里说了任何一个IP设备都得最少接收576尺寸的大小(实际上来说576是拨号的网络的MTU,而576减去IP头的20个字节就是536)。
如果你的网络包可以塞满MTU,那么你可以用满整个带宽,如果不能,那么你就会浪费带宽。(大于MTU的包有两种结局,一种是直接被丢了,另一种是会被重新分块打包发送) 你可以想像成一个MTU就相当于一个飞机的最多可以装的人,如果这飞机里满载的话,带宽最高,如果一个飞机只运一个人的话,无疑成本增加了,也而相当二。
所以,Silly Windows Syndrome这个现像就像是你本来可以坐200人的飞机里只做了一两个人。 要解决这个问题也不难,就是避免对小的window size做出响应,直到有足够大的window size再响应,这个思路可以同时实现在sender和receiver两端。
另外,Nagle算法默认是打开的,所以,对于一些需要小包场景的程序——比如像telnet或ssh这样的交互性比较强的程序,你需要关闭这个算法。你可以在Socket设置TCP_NODELAY选项来关闭这个算法(关闭Nagle算法没有全局参数,需要根据每个应用自己的特点来关闭)
1
|
setsockopt(sock_fd, IPPROTO_TCP, TCP_NODELAY, (
char
*)&value,
sizeof
(
int
));
|
另外,网上有些文章说TCP_CORK的socket option是也关闭Nagle算法,这个还不够准确。TCP_CORK是禁止小包发送,而Nagle算法没有禁止小包发送,只是禁止了大量的小包发送。最好不要两个选项都设置。老实说,我觉得Nagle算法其实只加了个延时,没有别的什么,我觉得最好还是把他关闭,然后由自己的应用层来控制数据,我个觉得不应该什么事都去依赖内核算法。
上面我们知道了,TCP通过Sliding Window来做流控(Flow Control),但是TCP觉得这还不够,因为Sliding Window需要依赖于连接的发送端和接收端,其并不知道网络中间发生了什么。TCP的设计者觉得,一个伟大而牛逼的协议仅仅做到流控并不够,因为流控只是网络模型4层以上的事,TCP的还应该更聪明地知道整个网络上的事。
具体一点,我们知道TCP通过一个timer采样了RTT并计算RTO,但是,如果网络上的延时突然增加,那么,TCP对这个事做出的应对只有重传数据,但是,重传会导致网络的负担更重,于是会导致更大的延迟以及更多的丢包,于是,这个情况就会进入恶性循环被不断地放大。试想一下,如果一个网络内有成千上万的TCP连接都这么行事,那么马上就会形成“网络风暴”,TCP这个协议就会拖垮整个网络。这是一个灾难。
所以,TCP不能忽略网络上发生的事情,而无脑地一个劲地重发数据,对网络造成更大的伤害。对此TCP的设计理念是:TCP不是一个自私的协议,当拥塞发生的时候,要做自我牺牲。就像交通阻塞一样,每个车都应该把路让出来,而不要再去抢路了。
关于拥塞控制的论文请参看《Congestion Avoidance and Control》(PDF)
拥塞控制主要是四个算法:1)慢启动,2)拥塞避免,3)拥塞发生,4)快速恢复。这四个算法不是一天都搞出来的,这个四算法的发展经历了很多时间,到今天都还在优化中。 备注:
首先,我们来看一下TCP的慢热启动。慢启动的意思是,刚刚加入网络的连接,一点一点地提速,不要一上来就像那些特权车一样霸道地把路占满。新同学上高速还是要慢一点,不要把已经在高速上的秩序给搞乱了。
慢启动的算法如下(cwnd全称Congestion Window):
1)连接建好的开始先初始化cwnd = 1,表明可以传一个MSS大小的数据。
2)每当收到一个ACK,cwnd++; 呈线性上升
3)每当过了一个RTT,cwnd = cwnd*2; 呈指数让升
4)还有一个ssthresh(slow start threshold),是一个上限,当cwnd >= ssthresh时,就会进入“拥塞避免算法”(后面会说这个算法)
所以,我们可以看到,如果网速很快的话,ACK也会返回得快,RTT也会短,那么,这个慢启动就一点也不慢。下图说明了这个过程。
这里,我需要提一下的是一篇Google的论文《An Argument for Increasing TCP’s Initial Congestion Window》Linux 3.0后采用了这篇论文的建议——把cwnd 初始化成了 10个MSS。 而Linux 3.0以前,比如2.6,Linux采用了RFC3390,cwnd是跟MSS的值来变的,如果MSS< 1095,则cwnd = 4;如果MSS>2190,则cwnd=2;其它情况下,则是3。
前面说过,还有一个ssthresh(slow start threshold),是一个上限,当cwnd >= ssthresh时,就会进入“拥塞避免算法”。一般来说ssthresh的值是65535,单位是字节,当cwnd达到这个值时后,算法如下:
1)收到一个ACK时,cwnd = cwnd + 1/cwnd
2)当每过一个RTT时,cwnd = cwnd + 1
这样就可以避免增长过快导致网络拥塞,慢慢的增加调整到网络的最佳值。很明显,是一个线性上升的算法。
前面我们说过,当丢包的时候,会有两种情况:
1)等到RTO超时,重传数据包。TCP认为这种情况太糟糕,反应也很强烈。
2)Fast Retransmit算法,也就是在收到3个duplicate ACK时就开启重传,而不用等到RTO超时。
上面我们可以看到RTO超时后,sshthresh会变成cwnd的一半,这意味着,如果cwnd<=sshthresh时出现的丢包,那么TCP的sshthresh就会减了一半,然后等cwnd又很快地以指数级增涨爬到这个地方时,就会成慢慢的线性增涨。我们可以看到,TCP是怎么通过这种强烈地震荡快速而小心得找到网站流量的平衡点的。
TCP Reno
这个算法定义在RFC5681。快速重传和快速恢复算法一般同时使用。快速恢复算法是认为,你还有3个Duplicated Acks说明网络也不那么糟糕,所以没有必要像RTO超时那么强烈。注意,正如前面所说,进入Fast Recovery之前,cwnd 和 sshthresh已被更新:
然后,真正的Fast Recovery算法如下:
如果你仔细思考一下上面的这个算法,你就会知道,上面这个算法也有问题,那就是——它依赖于3个重复的Acks。注意,3个重复的Acks并不代表只丢了一个数据包,很有可能是丢了好多包。但这个算法只会重传一个,而剩下的那些包只能等到RTO超时,于是,进入了恶梦模式——超时一个窗口就减半一下,多个超时会超成TCP的传输速度呈级数下降,而且也不会触发Fast Recovery算法了。
通常来说,正如我们前面所说的,SACK或D-SACK的方法可以让Fast Recovery或Sender在做决定时更聪明一些,但是并不是所有的TCP的实现都支持SACK(SACK需要两端都支持),所以,需要一个没有SACK的解决方案。而通过SACK进行拥塞控制的算法是FACK(后面会讲)
TCP New Reno
于是,1995年,TCP New Reno(参见 RFC 6582 )算法提出来,主要就是在没有SACK的支持下改进Fast Recovery算法的——
我们可以看到,这个“Fast Recovery的变更”是一个非常激进的玩法,他同时延长了Fast Retransmit和Fast Recovery的过程。
下面我们来看一个简单的图示以同时看一下上面的各种算法的样子:
FACK全称Forward Acknowledgment 算法,论文地址在这里(PDF)Forward Acknowledgement: Refining TCP Congestion Control 这个算法是其于SACK的,前面我们说过SACK是使用了TCP扩展字段Ack了有哪些数据收到,哪些数据没有收到,他比Fast Retransmit的3 个duplicated acks好处在于,前者只知道有包丢了,不知道是一个还是多个,而SACK可以准确的知道有哪些包丢了。 所以,SACK可以让发送端这边在重传过程中,把那些丢掉的包重传,而不是一个一个的传,但这样的一来,如果重传的包数据比较多的话,又会导致本来就很忙的网络就更忙了。所以,FACK用来做重传过程中的拥塞流控。
我们可以看到如果没有FACK在,那么在丢包比较多的情况下,原来保守的算法会低估了需要使用的window的大小,而需要几个RTT的时间才会完成恢复,而FACK会比较激进地来干这事。 但是,FACK如果在一个网络包会被 reordering的网络里会有很大的问题。
这个算法1994年被提出,它主要对TCP Reno 做了些修改。这个算法通过对RTT的非常重的监控来计算一个基准RTT。然后通过这个基准RTT来估计当前的网络实际带宽,如果实际带宽比我们的期望的带宽要小或是要多的活,那么就开始线性地减少或增加cwnd的大小。如果这个计算出来的RTT大于了Timeout后,那么,不等ack超时就直接重传。(Vegas 的核心思想是用RTT的值来影响拥塞窗口,而不是通过丢包) 这个算法的论文是《TCP Vegas: End to End Congestion Avoidance on a Global Internet》这篇论文给了Vegas和 New Reno的对比:
关于这个算法实现,你可以参看Linux源码:/net/ipv4/tcp_vegas.h, /net/ipv4/tcp_vegas.c
这个算法来自RFC 3649(Wikipedia词条)。其对最基础的算法进行了更改,他使得Congestion Window涨得快,减得慢。其中:
注:α(cwnd)和β(cwnd)都是函数,如果你要让他们和标准的TCP一样,那么让α(cwnd)=1,β(cwnd)=0.5就可以了。 对于α(cwnd)和β(cwnd)的值是个动态的变换的东西。 关于这个算法的实现,你可以参看Linux源码:/net/ipv4/tcp_highspeed.c
2004年,产内出BIC算法。现在你还可以查得到相关的新闻《Google:美科学家研发BIC-TCP协议 速度是DSL六千倍》 BIC全称Binary Increase Congestion control,在Linux 2.6.8中是默认拥塞控制算法。BIC的发明者发这么多的拥塞控制算法都在努力找一个合适的cwnd – Congestion Window,而且BIC-TCP的提出者们看穿了事情的本质,其实这就是一个搜索的过程,所以BIC这个算法主要用的是Binary Search——二分查找来干这个事。 关于这个算法实现,你可以参看Linux源码:/net/ipv4/tcp_bic.c
westwood采用和Reno相同的慢启动算法、拥塞避免算法。westwood的主要改进方面:在发送端做带宽估计,当探测到丢包时,根据带宽值来设置拥塞窗口、慢启动阈值。 那么,这个算法是怎么测量带宽的?每个RTT时间,会测量一次带宽,测量带宽的公式很简单,就是这段RTT内成功被ack了多少字节。因为,这个带宽和用RTT计算RTO一样,也是需要从每个样本来平滑到一个值的——也是用一个加权移平均的公式。 另外,我们知道,如果一个网络的带宽是每秒可以发送X个字节,而RTT是一个数据发出去后确认需要的时候,所以,X * RTT应该是我们缓冲区大小。所以,在这个算法中,ssthresh的值就是est_BD * min-RTT(最小的RTT值),如果丢包是Duplicated ACKs引起的,那么如果cwnd > ssthresh,则 cwin = ssthresh。如果是RTO引起的,cwnd = 1,进入慢启动。 关于这个算法实现,你可以参看Linux源码: /net/ipv4/tcp_westwood.c
更多的算法,你可以从Wikipedia的 TCP Congestion Avoidance Algorithm 词条中找到相关的线索