- PyWavelets
shangjg3
PyTorchpytorch人工智能python
PyWavelets(pywt)是Python中用于小波变换的核心库,提供了丰富的信号处理和图像处理功能。以下是其核心功能的详细介绍:1.小波变换基础(1)离散小波变换(DWT)将信号分解为近似系数(Approximation)和细节系数(Detail)。importpywtimportnumpyasnp#示例信号signal=np.array([1
- go关闭linux进程,Golang信号处理和优雅退出守护进程
凯然
go关闭linux进程
Golang中的信号处理信号类型个平台的信号定义或许有些不同。下面列出了POSIX中定义的信号。Linux使用34-64信号用作实时系统中。命令mansignal提供了官方的信号介绍。在POSIX.1-1990标准中定义的信号列表信号值动作说明SIGHUP1Term终端控制进程结束(终端连接断开)SIGINT2Term用户发送INTR字符(Ctrl+C)触发SIGQUIT3Core用户发送QUIT
- 信号处理算法:快速傅里叶变换(FFT)_(2).FFT算法的原理与实现
kkchenkx
信号处理技术仿真模拟信号处理算法
FFT算法的原理与实现1.引言快速傅里叶变换(FastFourierTransform,FFT)是一种高效的算法,用于计算离散傅里叶变换(DiscreteFourierTransform,DFT)及其逆变换。DFT在信号处理、图像处理、通信工程等领域中有着广泛的应用,但其计算复杂度为O(N2)O(N^2)O(
- 快速傅里叶变换(FFT)是什么?
Yashar Qian
信号处理快速傅里叶变换
快速傅里叶变换(FFT)是什么?快速傅里叶变换(FFT)本质上是一种极其高效的算法,用来计算**离散傅里叶变换(DFT)**及其逆变换。它是数字信号处理、科学计算和工程应用中最重要的算法之一。要理解FFT,先理解它要解决的问题:离散傅里叶变换(DFT)是什么?DFT全称:**DiscreteFourierTransform(离散傅里叶变换)想象你有一段数字化的信号(比如一段音频采样、图像像素数据、
- Sklearn 机器学习 数值离散化 虚拟编码
Thomas Kant
人工智能机器学习sklearn人工智能
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Sklearn机器学习:数值离散化+虚拟编码实战详解在机器学习的特征工程中,数值型特征并不总是适合直接输入模型。尤其是树模型或分类模型时,**将连续变量进行离散化(分箱)+虚拟编码(独热编码)**是一种常见且高效的
- 学习笔记丨信号处理新趋势:量子计算将如何颠覆传统DSP?
棱镜研途
量子计算信号处理学习人工智能单片机网络安全密码学
在算力需求爆炸式增长的今天,传统数字信号处理(DSP)芯片正面临物理极限的严峻挑战。当经典计算机架构在摩尔定律的黄昏中挣扎时,量子计算正以颠覆性姿态崛起,准备重新定义信号处理的未来图景。目录传统DSP的瓶颈:经典架构的物理极限量子新突破:从理论优越到实用跨越量子DSP的颠覆性优势:算法与架构的双重变革应用场景:从芯片校准到生命科学技术挑战与产业化路径未来已来:量子重塑信号处理传统DSP的瓶颈:经典
- Python编程:ISP中降噪(Noise Reduction)
倔强老吕
python接口隔离原则计算机视觉
降噪(NoiseReduction)是相机ISP(图像信号处理器)中的关键步骤,旨在消除或减弱图像中的噪声,同时尽可能保留细节。噪声可能来源于传感器(如暗电流噪声、读出噪声)、信号放大(增益噪声)或环境光线不足(光子散粒噪声)。噪声产生的原因(1)传感器噪声(SensorNoise)噪声主要来源于图像传感器的物理特性,包括:①光子噪声(PhotonNoise/ShotNoise)原因:光子到达传感
- 深入Python:实现FFT与DFT
weixin_42668301
本文还有配套的精品资源,点击获取简介:快速傅里叶变换(FFT)和离散傅里叶变换(DFT)是处理时域信号转换到频域的数字信号处理核心工具。本课程深入介绍FFT与DFT的原理及Python实现,涵盖从基本概念到使用numpy库进行信号处理的实战应用。学生将学习如何使用Python中的numpy库来执行DFT,掌握通过Cooley-Tukey算法实现的FFT来高效处理大型数据集。通过实际案例,理解如何分
- 探索 SSD FW 顶层架构:开发难题与应对策略
Richard_Lynn
SSDSSDFW顶层架构要素
探索SSDFW顶层架构:开发难题与应对策略在SSD开发的复杂版图中,FW(固件)顶层架构是核心支撑,决定着SSD的性能、稳定性与兼容性。但开发过程中,各类难题如荆棘丛生,今天就结合架构元素与实际挑战,聊聊SSDFW开发那些事儿。一、FW顶层架构关键元素解析(一)FSP:闪存信号处理的“精准操盘手”FSP承担读恢复、最优读电压表管理重任。SSD运行中,NAND闪存因磨损、温度变化,数据读取易出错。F
- 高通 Camera 架构全景图:Sensor–ISP–DPU–GPU 数据流向解析
观熵
影像技术全景图谱:架构调优与实战架构接口隔离原则影像Camera
高通Camera架构全景图:Sensor–ISP–DPU–GPU数据流向解析关键词高通Snapdragon、Camera架构、ISP模块、DPU、GPU、数据路径、硬件加速、图像处理流程摘要本文将深入解析高通Snapdragon平台下Camera系统的全链路数据流向,从Sensor输入到ISP图像信号处理、再到DPU显示输出与GPU并行处理的完整通路。通过结合MSM系列SoC的实际驱动架构与硬件模
- Sklearn 机器学习 数值离散化 区间标签
Thomas Kant
人工智能机器学习sklearn人工智能
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Sklearn机器学习:数值离散化之区间标签设置详解在机器学习中,连续数值型特征并不总是最优选择,尤其是在面对一些对数值大小不敏感的模型(如决策树、朴素贝叶斯)时。此时,我们常常希望将连续变量离散化(Discret
- MATLAB 实现数据的插值拟合
鱼弦
人工智能时代matlab人工智能算法
MATLAB实现数据的插值拟合1.介绍插值拟合是一种通过已知数据点构建函数或曲线的方法,用于估计未知数据点的值。插值拟合广泛应用于数据分析、信号处理、图像处理等领域。本教程介绍如何使用MATLAB实现数据的插值拟合,并展示其应用场景和代码实现。2.应用使用场景(1)数据分析场景描述:通过插值拟合填补缺失数据,如时间序列数据中的缺失值。代码实现:%定义数据x=[1,2,3,4,5];y=[2,4,5
- 60天python训练营打卡day20
tan90�=
python60天打卡python开发语言
学习目标:60天python训练营打卡学习内容:DAY20奇异值SVD分解奇异值分解这个理论,对于你未来无论是做图像处理、信号处理、特征提取、推荐系统等都非常重要,所以需要单独抽出来说一下这个思想。—甚至我在非常多文章中都看到单独用它来做特征提取(伪造的很高大上),学会这个思想并不复杂没学过线代的不必在意,推导可以不掌握,关注输入输出即可。今天这期有点类似于帮助大家形成闭环—考研数学不是白考的知识
- Linux 中的信号处理方式详解
zhuhp_
linux信号处理算法
在Linux操作系统中,信号(Signal)是一种进程间或内核与进程之间的通信机制,用于通知进程某种异步事件的发生。例如,当用户按下Ctrl+C时,系统会向当前前台进程发送SIGINT信号。本文将介绍三种常见的信号处理方式:1、默认处理动作2、自定义信号处理函数3、忽略信号一、默认处理动作系统对每个信号都有一个默认处理动作。比如:SIGTERM:终止进程(默认)SIGKILL:强制终止进程,不能捕
- 【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模式识别、遥感测绘、光学与通信技术领域国际研讨会来袭!
努力毕业的小土博^_^
学术会议推荐信号处理机器学习神经网络人工智能
【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模式识别、遥感测绘、光学与通信技术领域国际研讨会来袭!【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模式识别、遥感测绘、光学与通信技术领域国际研讨会来袭!文章目录【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模
- 使用Simulink结合MATLAB进行基于强化学习控制下的动态滤波器参数调节系统的仿真
amy_mhd
matlab开发语言
目录一、背景介绍二、所需工具和环境三、步骤详解步骤1:定义系统需求示例:定义系统需求步骤2:准备强化学习环境步骤3:训练强化学习代理步骤4:创建Simulink模型步骤5:添加信号源步骤6:合并信号步骤7:导入强化学习代理步骤8:设计滤波器步骤9:可视化结果步骤10:连接各模块步骤11:设置仿真参数步骤12:运行仿真并分析结果四、总结在现代信号处理领域,动态调整滤波器参数以适应不断变化的环境条件是
- EEG分类-Alpha band power
闪电科创
算法人工智能深度学习EEG脑电信号
在脑电图(EEG)信号处理的背景下,alpha波段功率(AlphaBandPower)是一个非常重要的特征,广泛应用于认知神经科学、临床诊断、情感分析以及脑机接口(BCI)等领域。接下来,我将详细介绍alpha波段功率的定义、特性、计算方法以及在脑电图分析中的应用。1.Alpha波段的定义Alpha波指的是EEG信号中的一个频带,通常定义为8到13赫兹(Hz)的频率范围。在脑电图中,alpha波是
- EEG分类 - Theta 频带 power
闪电科创
EEG脑电信号处理分类数据挖掘人工智能EEG脑电信号
在EEG(脑电图)信号处理的背景下,theta波段功率(ThetaBandPower)是一个重要的特征,广泛应用于认知、神经科学和临床监测等领域。接下来,我将详细介绍theta波段功率的定义、特性、计算方法以及在脑电图分析中的应用。1.Theta波段的定义Theta波是EEG信号的一个频带,通常定义为4到8赫兹(Hz)的频率范围。这一波段的脑电活动与许多认知功能和生理状态相关,尤其是与放松、轻度睡
- iOS HDR 与 Deep Fusion 图像合成流程详解:从捕获到输出的实战路径
iOSHDR与DeepFusion图像合成流程详解:从捕获到输出的实战路径关键词:iOSHDR、DeepFusion、图像合成流程、AVCapturePhotoBracket、高动态范围、图像融合、iPhoneA系列芯片、图像信号处理、ISPPipeline摘要:HDR与DeepFusion是Apple在图像计算方向的重要成果,它们通过多帧图像融合和复杂的ISP处理流程,实现了高亮保留、暗部提亮、
- Apple ProRAW 与 HEIC 编码流程全解析:数据结构、合成路径与开发接口实战指南
观熵
影像技术全景图谱:架构调优与实战数据结构影像Camera
AppleProRAW与HEIC编码流程全解析:数据结构、合成路径与开发接口实战指南关键词:AppleProRAW、HEIC编码、AVCapturePhotoOutput、CoreImage、RAW图像处理、图像信号处理、ProRAWPipeline、深度合成、MobileImaging摘要:Apple在图像采集链条中引入HEIC与ProRAW编码格式,极大提升了图像质量与存储效率,也为开发者提供
- 【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波——附3个算法源码
1.卡尔曼滤波卡尔曼滤波是一种线性最优估计方法,用于估计动态系统的状态。在姿态解算中,我们可以使用卡尔曼滤波来融合陀螺仪和加速度计的数据,以获得更稳定的姿态估计。以下是一个简单的卡尔曼滤波器实现:```c#include"kalman.h"voidKalman_Init(Kalman_TypeDef*Kalman){Kalman->P[0][0]=1;Kalman->P[1][1]=1;Kalma
- 多目标跟踪
行走的小部落
目标跟踪人工智能计算机视觉
侦探联盟:多目标跟踪大作战适合对象:高中生关键点:多目标跟踪、传统方法、深度学习、卡尔曼滤波、匈牙利算法、CNN、Re-ID序章:神秘的闹市阴影夜晚的星城,一场盛大的街头音乐节即将开幕。灯光下,形形色色的人在广场上游走。人声、音乐声交织成宏大的交响。突然,警局接到一封匿名信:有人要在音乐节上搞破坏,还不止一个人。“多目标追踪联盟”火速集结:他们擅长在人群中盯梢,每一个侦探都有独特的本领。今天,他们
- 解锁数据宝藏:数据挖掘之数据预处理全解析
奔跑吧邓邓子
必备核心技能数据挖掘数据预处理机器学习
目录一、引言:数据预处理——数据挖掘的基石二、数据预处理的重要性2.1现实数据的问题剖析2.2数据预处理的关键作用三、数据预处理的核心方法3.1数据清洗3.1.1缺失值处理3.1.2离群点处理3.1.3噪声处理3.2数据集成3.2.1实体识别3.2.2冗余处理3.2.3数据值冲突处理3.3数据变换3.3.1平滑处理3.3.2聚合操作3.3.3离散化3.3.4归一化四、数据预处理的实践流程4.1数据
- Qt应用中处理Linux信号:实现安全退出的技术指南
极地星光
软件功能原理QTqtlinux
引言:为什么需要信号处理机制?在开发Linux桌面应用时,我们经常需要处理系统信号,比如用户按下Ctrl+C(SIGINT)或系统发送终止信号(SIGTERM)。传统的信号处理方式在Qt应用中存在局限性——无法安全地与Qt事件循环交互。本文将介绍一种高效可靠的方法,使用QSocketNotifier将系统信号集成到Qt事件循环中,实现应用的优雅退出。一、技术要点解析1.1核心机制SocketPai
- 宽带中频10.4G采集卡
宽带中频10.4G采集卡同时支持交流耦合与双极性宽带信号输入的高精度高速数据采集卡,它提供12位双通道5.2GS/s或单通道10.4GA/D通道,全功率模拟带宽(-3dB)8GHz。板载FPGA具备实时信号处理能力,可以进行大数据量的实时信号处理,这些特性使其成为超宽带信号采集、雷达、复杂电磁环境及无线频谱应用领域进行信号采集和分析的理想工具。提供快速的PCIExpress3.0x8数据传输接口,
- PCIe宽带中频采集回放平台3GS/s 采集14bit 2通道 12.6GS/s回放 16bit 2通道
FPGA_ADDA
fpga开发信号处理信息与通信嵌入式硬件
PCIe宽带中频采集回放平台3GS/s采集14bit2通道12.6GS/s回放16bit2通道,是一款具备交流耦合和双极性宽带信号输入的高速数据采集卡,它具有2通道,14bit,3GS/s采集和2通道,16bit,12.6GS/s回放特性。板载FPGA具备实时信号处理能力,可实现数字下变频DDC、数字滤波、快速傅立叶变换等信号处理算法。提供快速的PCIExpress3.0x8数据传输接口,以及灵活
- 中科亿海微SoM模组——中频信号采集存储卡
ehiway
fpga开发
数字中频信号采集存储是指利用ADC、FPGA实现对信号进行数字化采集、处理和存储传输的过程。该技术在通信、雷达、无线电等领域具有重要应用。通过高速ADC将模拟信号转换为数字信号,并在FPGA中进行数字信号处理,将数据存储、传输到外部存储器。中科亿海微开发的基于FPGA的中频信号采集存储卡,利用FPGA实现数字中频信号采集和处理,可以提高系统灵活性和性能,适用于需要高速数据处理和实时响应的应用场景。
- 用excel构建神经网络,excel神经网络实现
快乐的小荣荣
神经网络人工智能深度学习
NeuroSolutionsforExcel这个功能可以实现多种神经网络嘛?。神经网络是一种能适应新环境的系统,它针对过去经验(信息)的重覆学习,而具有分析、预测、推理、分类等能力,是当今能够仿效人类大脑去解决复杂问题的系统,比起常规的系统(使用统计方法、模式识别、分类、线性或非线性方法)而言,以神经网络为基础的系统具有更强大的功能和分析问题技巧,可以用来解决信号处理、仿真预测、分析决策等复杂的问
- python scipy简介
凤枭香
Python图像处理pythonscipy开发语言图像处理
scipyscipy是一个python开源的数学计算库,可以应用于数学、科学以及工程领域,它是基于numpy的科学计算库。主要包含了统计学、最优化、线性代数、积分、傅里叶变换、信号处理和图像处理以及常微分方程的求解以及其他科学工程中所用到的计算。scipy模块介绍scipy主要通过下面这些包来实现数学算法和科学计算,后面对于scipy的讲解主要也是基于这些包来实现的cluster:包含聚类算法co
- Python之scipy(算法/数学工具)用法
薛毅轩
python
scipy是一个开源的Python算法库和数学工具包,它基于NumPy,提供了许多用于数学、科学和工程的算法。scipy包含了统计、优化、积分、插值、特殊函数、快速傅里叶变换、信号处理、图像处理、常微分方程求解等模块。以下是一些scipy库的基本用法示例:1.特殊函数scipy.special模块提供了许多数学上的特殊函数。fromscipyimportspecial#计算阶乘和组合数factor
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置