- python简单项目实现第2弹(九九乘法表/水仙花数及其延申应用)
都市最强牛爷爷
python
你好,欢迎查看我的第二个笔记。本人是某不知名大学数学系大一新生,由于对计算机感兴趣,所以跟着B站上老师学习python语言。每道题目我都尽我所能地讲清楚,如果有什么看不懂的地方欢迎在评论区留言,大家一起学习共同进步。本篇文章包括以下3个项目项目4:打印九九乘法表项目5:打印水仙花数项目6:倒序输出用户输入的4位数项目4:打印乘法口诀表如图由上图我们可以总结出如下特点(以a*b=c为例)a代表行数,
- 大模型是如何蒸馏像Qwen-7B,Llama-3 这种小模型的?
闫哥大数据
大模型llama人工智能
1.Qwen-7B和Llama-3的所属公司Qwen-7B:属于阿里巴巴,是“通义千问”系列的开源模型,由阿里云团队研发。Llama-3:属于Meta(原Facebook),是Meta开源的Llama系列大语言模型的最新版本。2.蒸馏数据的使用与模型归属蒸馏技术的作用:DeepSeek将自研大模型(如DeepSeek-R1)生成的80万条高质量解题数据(称为“蒸馏数据”)用于训练Qwen、Llam
- DeepSeek动态增量学习技术详解与实战指南
燃灯工作室
Deepseek人工智能机器学习数据挖掘
一、主题背景1.Why:破解模型持续进化难题传统全量训练模式面临三大困境:金融风控场景中,每周新增百万级欺诈样本时,全量训练耗时从3小时增至8小时(数据量年增长300%)医疗影像诊断模型遇到新病症类型时,需要重新标注全部历史数据智能客服系统无法保留上周学习的行业专有术语DeepSeek方案实现:训练耗时:新增数据量20%时,耗时仅增加35%(传统方法需100%)灾难性遗忘率:在CLVision20
- GLake:优化GPU内存管理与IO传输的开源项目
2401_87458718
开源
GLake:突破GPU内存和IO瓶颈的利器在人工智能快速发展的今天,大模型训练和推理正面临着严峻的挑战。随着模型规模的不断扩大,GPU内存容量和IO带宽的增长速度已经远远跟不上AI模型规模的增长速度,形成了所谓的"内存墙"和"IO传输墙"。为了应对这些挑战,一个名为GLake的开源项目应运而生,旨在通过底层优化来突破GPU内存和IO传输的瓶颈。GLake简介GLake是一个专注于优化GPU内存管理
- C语言中 二维数组在内存中的存放顺序是,在计算机中二维数组的元素是按行顺序存放的,即在内存中,先顺序存放二维数组第一行的元素,再顺序存放二维数组第二行的元素,以此类推 答案:对...
斯托克弗
C语言中二维数组在内存中的存放顺序是
相关问题服装时尚流行趋势包含哪些元素中国大学MOOC:在本征半导体中掺入三价元素的杂质半导体的自由电子是()。下列说法正确的有()。:说法逻辑关系上数据结构类线性结构结构数据逻辑结构数据元素之间逻辑关系数据逻辑结构数据元素内容形式《人之塔》的作者是博罗夫斯基,使用了52个标准人形为基本元素,表达了对人类团结的信念。():人之塔作者博罗夫斯基人形元素人类信念以碳素钢为基础适量加入一种或几种合金元素的
- 学习计划:第四阶段(第八周)
狐凄
学习学习
目录第四阶段:特殊方法与高级特性第8周:学习特殊方法周一周二周三周四周五总结一、学习内容回顾理论学习代码实践二、问题与解决问题解决方法三、学习成果四、下周计划第四阶段:特殊方法与高级特性第8周:学习特殊方法周一上午理论学习:阅读Python官方文档中关于特殊方法的章节,初步了解特殊方法的概念和作用。特殊方法也称为魔术方法,它们以双下划线开头和结尾,用于实现Python内置操作和语法糖。重点关注特殊
- DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?
爱吃青菜的大力水手
人工智能
DeepSeek技术解析:降本增效的“双刃剑”如何重塑AI产业?正面影响分析算力需求与成本大幅降低DeepSeek通过算法优化(如稀疏计算、知识蒸馏)和模型压缩技术,将云端训练算力需求降至传统大模型的35%,车端推理芯片需求减少至65%。例如,某车企使用高通8650平台后,智驾系统成本显著下降。这种优化使得中小企业能以更低成本部署AI,甚至支持本地化私有化部署(如金融行业案例),同时减少对英伟达高
- DeepSeek:突破闭源封锁,引领大模型新时代
fanstinmsl
算法语言模型
近年来,人工智能领域蓬勃发展,大模型作为其中的核心技术,其重要性不言而喻。然而,大模型的训练和部署往往面临着硬件依赖性强、成本高昂、效率低下等挑战。DeepSeek的出现,为解决这些问题提供了全新的思路和方案。DeepSeek的核心优势:1.减少硬件依赖:DeepSeek通过算法优化和架构创新,降低了对高性能硬件的依赖,使得大模型的训练和部署可以在更广泛的硬件平台上进行,极大地降低了应用门槛。**
- Pytorch:以CIFAR-10分类为例,给出了神经网络的训练流程
Xiao_Ya__
深度学习pytorchpytorch分类神经网络
下面给出了神经网络的训练流程,包括数据加载与预处理、网络定义、损失函数和优化器定义、网络训练和网络测试。importtorchastimporttorchvisionastvimporttorchvision.transformsastransformsfromtorchvision.transformsimportToPILImageimporttorch.nnasnnimporttorch.n
- 洛谷P1004(方格取数[NOIP 2000 提高组])题解
1≈∞
算法题解
题目大意:在一个N×N的方格中,从左上角到右下角走两次,每次只能向下或向右走,取过的数会变成0,求两次路径取数的最大总和。首先,我们需要理解问题。两次路径都要走,并且第一次走过的格子第二次就不能再取了。所以需要找到两条路径,使得它们经过的格子的数值之和最大,并且路径不能重复取数。或者,或者说,即使路径交叉也没关系,但同一个格子只能被取一次。比如,如果两条路径都经过同一个格子,那么这个格子的数只能被
- 梯度累加(结合DDP)梯度检查点
糖葫芦君
LLM算法人工智能大模型深度学习
梯度累加目的梯度累积是一种训练神经网络的技术,主要用于在内存有限的情况下处理较大的批量大小(batchsize)。通常,较大的批量可以提高训练的稳定性和效率,但受限于GPU或TPU的内存,无法一次性加载大批量数据。梯度累积通过多次前向传播和反向传播累积梯度,然后一次性更新模型参数,从而模拟大批量训练的效果。总结:显存限制:GPU/TPU显存有限,无法一次性加载大批量数据。训练稳定性:大批量训练通常
- if constexpr 与常量表达式: 编译时的“如果“【仓鼠学CPP17】
仓鼠圆啊元
cpp17c++macos面试visualstudiocode学习
前言if,条件语句,可以说是众所周知的东西了。但在cpp-17里,又推出了一个“ifconstexpr”,同样是表示比较。两者区别在于:if是在运行时比较,而ifconstexpr,是在编译器里比较。一个程序,编译只要一遍,实际运行则可能会跑很多次,因此,在对于一些能在编译器里所确定的内容,使用ifconstexpr是一个好主意!当然,大部分内容是不会就在编译器的时候就确定的,因此,其使用有局限性
- 支持向量机(Support Vector Machine,SVM)
不易撞的网名
支持向量机算法机器学习
支持向量机(SupportVectorMachine,简称SVM)是一种监督学习模型,主要用于分类和回归分析。SVM的基本思想是寻找一个决策边界或超平面,使得两类样本之间的间隔最大化。这个间隔被定义为支持向量到超平面的最短距离,而支持向量就是那些恰好位于间隔边缘上的训练样本点。线性可分情况下的SVM假设我们有一组训练数据(x1,y1),(x2,y2),…,(xn,yn)(x_1,y_1),(x_2
- Tensorflow2.x框架-神经网络八股扩展-acc曲线与loss曲线
诗雨时
loss/loss可视化,可视化出准确率上升、损失函数下降的过程博主微信公众号(左)、Python+智能大数据+AI学习交流群(右):欢迎关注和加群,大家一起学习交流,共同进步!目录摘要一、acc曲线与loss曲线二、完整代码摘要loss/loss可视化,可视化出准确率上升、损失函数下降的过程一、acc曲线与loss曲线history=model.fit(训练集数据,训练集标签,batch_siz
- DeepSeek强化学习(Reinforcement Learning)基础与实践
Evaporator Core
强化学习#DeepSeek快速入门人工智能python数据库tornado强化学习deepseek
引言强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,专注于训练智能体(Agent)在环境中通过试错来学习最优策略。与监督学习和无监督学习不同,强化学习通过奖励信号来指导智能体的行为,使其能够在复杂的环境中做出决策。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练强化学习模型。本文将详细介绍如何使用DeepSeek进行强化学习的基础与实践,并通
- 《震撼!“懂哥” 独特形象,世间难寻第二人!》
故障抖机灵大师
科普与知识分享深度剖析电脑windows运维生活
懂哥系列文章深度揭秘:公司“懂哥”的独特外貌形象在我们公司,“懂哥”的名号那可是无人不知、无人不晓,早已如雷贯耳。此前,大家没少听闻他那些令人忍俊不禁、啼笑皆非的趣事,想必不少人都对这位堪称“传奇”的人物的外貌形象充满了好奇。今天,就带大家全方位领略一下“懂哥”那别具一格、独树一帜的造型风采。一、独特的身姿体态“懂哥”身高刚过170cm,但他习惯性地微微驼背,这个姿势实在是太独特了,就好像他真真切
- 团体程序设计天梯赛-练习集——L1-052 2018我们要赢
SY师弟
GPLT天梯赛算法c语言数据结构c++PTAGPLT团体程序设计天梯赛
前言这个题看题目有点年代感了,2018是有啥大事来着吗?像一颗海草海草,随风飘摇哈哈哈,下面看看题目L1-0522018我们要赢2018年天梯赛的注册邀请码是“2018wmyy”,意思就是“2018我们要赢”。本题就请你用汉语拼音输出这句话。输入格式:本题没有输入。输出格式:在第一行中输出:“2018”;第二行中输出:“wo3men2yao4ying2!”。输入样例:无输出样例:2018wo3me
- 力扣hot100——分割回文子串 + 回溯算法总结(算法代码模板)
01_
力扣hot100算法leetcode回溯算法
给你一个字符串s,请你将s分割成一些子串,使每个子串都是回文串。返回s所有可能的分割方案。解法思路:切割一个a之后,在ab中再去切割第二段.....classSolution{public:vector>res;//最终结果vectorpath;//当前结果vector>partition(strings){backtracking(s,0);returnres;}voidbacktracking
- python-leetcode 22.相交链表
SylviaW08
leetcode-pythonleetcode算法职场和发展
题目:给两个单链表的头节点heada和headb,请找出并返回两个单链表相交的起始节点。如果两个链表不存在相较节点,返回null。两个链表在C1开始相交。intersectval:相交的起始节点的值,如果不存在相交节点,这一值为0listA:第一个链表listB:第二个链表skipA:在listA从头节点开始,跳到交叉节点的节点数skipB:在listB从头节点开始跳到交叉节点的节点数方法一:哈希
- 跟着小K开始零基础Python量化分析之旅 2: 初试身手 —— Python基础与神秘股票清单
山海青风
python
第二章:初试身手——Python基础与神秘股票清单在这一章中,我们将跟随小K的脚步,开启Python的初探之旅。小K刚刚踏入量化投资的世界,就收到了前辈神秘发送的一份文件——“神秘股票清单.csv”。前辈告诉他,只有牢牢掌握Python的基础语法,才能游刃有余地处理金融数据,进一步深入量化分析的奥秘。接下来,就让我们一起体验小K如何用Python完成这个第一个小任务,从而收获满满的成就感吧!故事情
- 0092:小明养猪的故事(C++)
王.Victoria
c++编程语言
小明养猪的故事描述话说现在猪肉价格这么贵,小明也开始了养猪生活。说来也奇怪,他养的猪一出生第二天开始就能每天中午生一只小猪,而且生下来的竟然都是母猪。不过光生小猪也不行,小明采用了一个很奇特的办法来管理他的养猪场:对于每头刚出生的小猪,在它生下第二头小猪后立马被杀掉,卖到超市里。假设在创业的第一天,小明只买了一头刚出生的小猪,请问,在第N天晚上,小明的养猪场里还存有多少头猪?输入测试数据的第一行是
- 第三讲-神经网络八股
loveysuxin
Tensorflowtensorflow
一、搭建神经网络六部法tf.keras搭建神经网络六部法1、import相关模块 2、train,test #训练集、测试集3、model=tf.keras.models.Sequential #逐层搭建网络结构4、model.compile #配置训练方法,选择训练使用的优化器、损失函数和最终评价指标5、model.fit #执行训练过程,告知训练集和测试集的输入值和标签、每个batc
- 神经网络八股(3)
SylviaW08
神经网络人工智能深度学习
1.什么是梯度消失和梯度爆炸梯度消失是指梯度在反向传播的过程中逐渐变小,最终趋近于零,这会导致靠前层的神经网络层权重参数更新缓慢,甚至不更新,学习不到有用的特征。梯度爆炸是指梯度在方向传播过程中逐渐变大,权重参数更新变化较大,导致损失函数的上下跳动,导致训练不稳定可以使用一些合理的损失函数如relu,leakRelu,归一化处理,batchnorm,确保神经元的输出值在合理的范围内2.为什么需要特
- DeepSeek基础之机器学习
珠峰日记
机器学习ai人工智能
文章目录一、核心概念总结(一)机器学习基本定义(二)基本术语(三)假设空间(四)归纳偏好(五)“没有免费的午餐”定理(NFL定理)二、重点理解与思考(一)泛化能力的重要性(二)归纳偏好的影响(三)NFL定理的启示三、应用场景联想(一)电商推荐系统(二)医疗诊断四、机器学习的基本流程(一)问题定义(二)数据收集与预处理(三)模型选择与训练(四)模型评估与优化(五)模型部署与应用五、机器学习的挑战(一
- 50周学习go语言:第1周 环境搭建
PyAIGCMaster
50周学习go语言学习golang开发语言
以下是为零基础学习者准备的详细第1周教程,包含环境搭建、工具配置和首个Go程序的完整操作指南:一、Go语言环境安装(Windows/macOS/Linux通用)1.下载安装包官网地址:https://go.dev/dl//根据系统选择对应版本:Windows:下载.msi文件(如go1.21.0.windows-amd64.msi)macOS:下载.pkg文件(如go1.21.0.darwin-a
- 【PyTorch项目实战】图像分割 —— U-Net:Semantic segmentation with PyTorch
胖墩会武术
深度学习PyTorch项目实战pythonunetpytorch
文章目录一、项目介绍二、项目实战2.1、环境搭建2.1.1、下载源码2.1.2、下载预训练模型2.1.3、下载训练集2.2、环境配置2.3、代码优化+架构优化2.4、模型预测:predict.pyU-Net是一种用于生物医学图像分割的卷积神经网络架构,最初由OlafRonneberger等人于2015年提出。论文:U-Net:ConvolutionalNetworksforBiomedicalIm
- YoloV8训练参数篇
江木27
YOLOYOLO人工智能深度学习
官方介绍:官方解释对官方介绍的补充主要包含常用的参数,需要搭配使用的参数实验名称组合project:项目名称。这个参数用于标识当前训练任务所属的项目,方便管理和组织多个训练任务。name:实验名称。该参数为当前训练任务指定一个名称,以便于标识和区分不同的实验。exist_ok:是否覆盖现有的实验。如果设置为True,当实验名称已经存在时,将会覆盖现有实验。默认为False。最终实验数据会创建在pr
- Python微调DeepSeek-R1-Distill-Qwen-1.5B模型:使用Transformers和PyTorch进行训练
煤炭里de黑猫
pytorchpython人工智能机器学习
前言近年来,基于Transformer架构的预训练语言模型如GPT、BERT等已经取得了显著的成果,广泛应用于自然语言处理(NLP)的各个领域。为了让这些模型更加适应特定任务,我们通常会进行微调(Fine-tuning)。本博客将详细介绍如何微调一个名为Qwen-1.5B的模型,使用HuggingFace的Transformers库与PyTorch框架来实现。我们将通过一步步的代码解析,帮助你理解
- 以太坊介绍
倒霉男孩
区块链区块链
文章目录以太坊以太坊和比特币的区别以太网货币单位以太坊以太坊是“世界的计算机”。以太坊是一种确定性但实际上无界的状态机,它有两个基本功能,第一个是全局可访问的单例状态,第二个是对状态进行更改的虚拟机。从更实际的角度来说,以太坊是一个开源的,全球的去中心化计算架构,执行成为智能合约的程序。它使用区块链来从同步和存储系统状态,以及称为ether的加密货币来计量和约束执行资源成本。智能合约相当于可以在以
- LCD抗干扰驱动防静电液晶屏驱动VK2C21抗噪液晶驱动芯片
后端
VK2C21是一个点阵式存储映射的LCD驱动器,可支持最大80点(20SEGx4COM)或者最大128点(16SEGx8COM)的LCD屏。单片机可通过I2C接口配置显示参数和读写显示数据,也可通过指令进入省电模式。其高抗干扰,低功耗的特性适用于水电气表以及工控仪表类产品。L76+348特点:•工作电压2.4-5.5V•内置32kHzRC振荡器•偏置电压(BIAS)可配置为1/3、1/4•COM周
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL