该数据集由加州理工学院再2010年提出的细粒度数据集,也是目前细粒度分类识别研究的基准图像数据集。
该数据集共有11788张鸟类图像,包含200类鸟类子类,其中训练数据集有5994张图像,测试集有5794张图像,每张图像均提供了图像类标记信息,图像中鸟的bounding box,鸟的关键part信息,以及鸟类的属性信息,数据集如下图所示。
下载的数据集中,包含了如下文件:
bounding_boxes.txt;classes.txt;image_class_labels.txt; images.txt; train_test_split.txt.
其中,bounding_boxes.txt为图像中鸟类的边界框信息;classes.txt为鸟类的类别信息,共有200类; image_class_labels.txt为图像标签和所属类别标签信息;images.txt为图像的标签和图像路径信息;train_test_split.txt为训练集和测试集划分。
本博客主要是根据train_test_split.txt文件和images.txt文件将原始下载的CUB200-2011数据集划分为训练集和测试集。在深度学习Pytorch框架下采用ImageFolder和DataLoader读取数据集较为方便。相关的python代码如下:
# *_*coding: utf-8 *_*
# author --liming--
"""
读取images.txt文件,获得每个图像的标签
读取train_test_split.txt文件,获取每个图像的train, test标签.其中1为训练,0为测试.
"""
import os
import shutil
import numpy as np
import config
import time
time_start = time.time()
# 文件路径
path_images = config.path + 'images.txt'
path_split = config.path + 'train_test_split.txt'
trian_save_path = config.path + 'dataset/train/'
test_save_path = config.path + 'dataset/test/'
# 读取images.txt文件
images = []
with open(path_images,'r') as f:
for line in f:
images.append(list(line.strip('\n').split(',')))
# 读取train_test_split.txt文件
split = []
with open(path_split, 'r') as f_:
for line in f_:
split.append(list(line.strip('\n').split(',')))
# 划分
num = len(images) # 图像的总个数
for k in range(num):
file_name = images[k][0].split(' ')[1].split('/')[0]
aaa = int(split[k][0][-1])
if int(split[k][0][-1]) == 1: # 划分到训练集
#判断文件夹是否存在
if os.path.isdir(trian_save_path + file_name):
shutil.copy(config.path + 'images/' + images[k][0].split(' ')[1], trian_save_path+file_name+'/'+images[k][0].split(' ')[1].split('/')[1])
else:
os.makedirs(trian_save_path + file_name)
shutil.copy(config.path + 'images/' + images[k][0].split(' ')[1], trian_save_path + file_name + '/' + images[k][0].split(' ')[1].split('/')[1])
print('%s处理完毕!' % images[k][0].split(' ')[1].split('/')[1])
else:
#判断文件夹是否存在
if os.path.isdir(test_save_path + file_name):
aaaa = config.path + 'images/' + images[k][0].split(' ')[1]
bbbb = test_save_path+file_name+'/'+images[k][0].split(' ')[1]
shutil.copy(config.path + 'images/' + images[k][0].split(' ')[1], test_save_path+file_name+'/'+images[k][0].split(' ')[1].split('/')[1])
else:
os.makedirs(test_save_path + file_name)
shutil.copy(config.path + 'images/' + images[k][0].split(' ')[1], test_save_path + file_name + '/' + images[k][0].split(' ')[1].split('/')[1])
print('%s处理完毕!' % images[k][0].split(' ')[1].split('/')[1])
time_end = time.time()
print('CUB200训练集和测试集划分完毕, 耗时%s!!' % (time_end - time_start))
# *_*coding: utf-8 *_*
# author --liming--
path = '/media/lm/C3F680DFF08EB695/细粒度数据集/birds/CUB200/CUB_200_2011/'
ROOT_TRAIN = path + 'images/train/'
ROOT_TEST = path + 'images/test/'
BATCH_SIZE = 16
# *_*coding: utf-8 *_*
# author --liming--
"""
用于已下载数据集的转换,便于pytorch的读取
"""
import torch
import torchvision
import config
from torchvision import datasets, transforms
data_transform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def train_data_load():
# 训练集
root_train = config.ROOT_TRAIN
train_dataset = torchvision.datasets.ImageFolder(root_train,
transform=data_transform)
CLASS = train_dataset.class_to_idx
print('训练数据label与文件名的关系:', CLASS)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=config.BATCH_SIZE,
shuffle=True)
return CLASS, train_loader
def test_data_load():
# 测试集
root_test = config.ROOT_TEST
test_dataset = torchvision.datasets.ImageFolder(root_test,
transform=data_transform)
CLASS = test_dataset.class_to_idx
print('测试数据label与文件名的关系:',CLASS)
test_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=config.BATCH_SIZE,
shuffle=True)
return CLASS, test_loader
if __name__ == '__main___':
train_data_load()
test_data_load()