前言
以前我非常沉迷入黑客,每每看着高手们发到网上的攻击检测程序
心中那个羡慕啊,要是那天我也能写出这样的程序该多好啊
可是,我也就只有羡慕的份,谁叫自己不懂英语呢,又没有中文的编程语言
直到有一天,我在一家报纸杂志上看到关于易语言的消息.
......
现在看到论坛上有好多人都埋怨易语言,说这不好,那不好,其实不然
易语言还是一个成长中的小树,当然不能和一些早以成长多年的大树相比.
但是有一句俗话不是说"长江后浪推前浪,一山更比一山高"吗?
好了,废话不想多说了,言归正转
<一>勾子基本概念
本期导读:什么叫勾子,勾子又起什么作用,它有那些类别,怎么使用,等等这些问题将在本期找到答案
=======================================================================================
基本概念
钩子(Hook),是Windows消息处理机制的一个平台,应用程序可以在上面设置子程以监视指定窗口的某种消息,而且所监视的窗口可以是其他进程所创建的。当消息到达后,在目标窗口处理函数之前处理它。钩子机制允许应用程序截获处理window消息或特定事件。
钩子实际上是一个处理消息的程序段,通过系统调用,把它挂入系统。每当特定的消息发出,在没有到达目的窗口前,钩子程序就先捕获该消息,亦即钩子函数先得到控
制权。这时钩子函数即可以加工处理(改变)该消息,也可以不作处理而继续传递该消息,还可以强制结束消息的传递。
运行机制
1、钩子链表和钩子子程:
每一个Hook都有一个与之相关联的指针列表,称之为钩子链表,由系统来维护。这个列表的指针指向指定的,应用程序定义的,被Hook子程调用的回调函数,也就是该钩子的各个处理子程。当与指定的Hook类型关联的消息发生时,系统就把这个消息传递到Hook子程。一些Hook子程可以只监视消息,或者修改消息,或者停止消息的前进,避免这些消息传递到下一个Hook子程或者目的窗口。最近安装的钩子放在链的开始,而最早安装的钩子放在最后,也就是后加入的先获得控制权。
Windows 并不要求钩子子程的卸载顺序一定得和安装顺序相反。每当有一个钩子被卸载,Windows 便释放其占用的内存,并更新整个Hook链表。如果程序安装了钩子,但是在尚未卸载钩子之前就结束了,那么系统会自动为它做卸载钩子的操作。
钩子子程是一个应用程序定义的回调函数(CALLBACK Function),不能定义成某个类的成员函数,只能定义为普通的C函数。用以监视系统或某一特定类型的事件,这些事件可以是与某一特定线程关联的,也可以是系统中所有线程的事件。
钩子子程必须按照以下的语法:
LRESULT CALLBACK HookProc
(
int nCode,
WPARAM wParam,
LPARAM lParam
);
当然上面是在C中的表达方式,意思是说这个直定义的钩子子程必须有3个参数,在易中应象这样表达:
.子程序 HookProc, 整数型, 公开, 钩子回调函数
.参数 ncode, 整数型
.参数 wParam, 整数型
.参数 lParam, 整数型
HookProc是应用程序定义的名字。
nCode参数是Hook代码,Hook子程使用这个参数来确定任务。这个参数的值依赖于Hook类型,每一种Hook都有自己的Hook代码特征字符集。
wParam和lParam参数的值依赖于Hook代码,但是它们的典型值是包含了关于发送或者接收消息的信息。
2、钩子的安装与释放:
<1>钩子的安装
使用API函数SetWindowsHookEx()把一个应用程序定义的钩子子程安装到钩子链表中。SetWindowsHookEx函数总是在Hook链的开头安装Hook子程。当指定类型的Hook监视的事件发生时,系统就调用与这个Hook关联的Hook链的开头的Hook子程。每一个Hook链中的Hook子程都决定是否把这个事件传递到下一个Hook子程。Hook子程传递事件到下一个Hook子程需要调用CallNextHookEx函数。
HHOOK SetWindowsHookEx(
int idHook, //参数<1>
HOOKPROC lpfn, //参数<2>
HINSTANCE hMod, //参数<3>
DWORD dwThreadId //参数<4>
);
在易中则这样声明DLL:
.DLL命令 api_SetWindowsHookExA, 整数型, , "SetWindowsHookExA"
.参数 idHook, 整数型
.参数 lpfn, 子程序指针
.参数 nMod, 整数型
.参数 dwThreadID, 整数型
参数<1>idHook是钩子的类型,即它处理的消息类型
参数<2>lpfn是钩子子程的地址指针。如果dwThreadId参数为0,或是一个由别的进程创建的线程的标识
lpfn必须指向DLL中的钩子子程。除此以外,lpfn可以指向当前进程的一段钩子子程代码。 参数<3>nMod是应用程序实例的句柄。标识包含lpfn所指的子程的DLL,如果dwThreadId 标识当前进程 创建的一个线程,而且子程代码位于当前进程,hMod必须为NULL。可以很简单的设定其为本 应用程序的实例句柄。
参数<4>dwThreadID:与安装的钩子子程相关联的线程的标识符, 如果为0,钩子子程与所有的线程关联 即为全局钩子。
函数成功则返回钩子子程的句柄,失败返回(NULL)0。
<2>钩子的循环
以上所说的钩子子程与线程相关联是指在一钩子链表中发给该线程的消息同时发送给钩子子程,且被钩子子程先处理。在钩子子程中调用得到控制权的钩子函数在完成对消息的处理后,如果想要该消息继续传递,那么它必须调用另外一个SDK中的API函数CallNextHookEx来传递它,以执行钩子链表所指的下一个钩子子程。这个函数成功时返回钩子链中下一个钩子过程的返回值,返回值的类型依赖于钩子的类型。这个函数的原型如下:
LRESULT CallNextHookEx
(
HHOOK hhook;
int nCode;
WPARAM wParam;
LPARAM lParam;
);
在易中则这样声明DLL:
.DLL命令 CallNextHookEx, 整数型, , "CallNextHookEx"
.参数 hhook, 整数型
.参数 nCode, 整数型
.参数 wParam, 整数型
.参数 lParam, 整数型
hk为当前钩子的句柄,由SetWindowsHookEx()函数返回。
NCode为传给钩子过程的事件代码。
wParam和lParam 分别是传给钩子子程的wParam值,其具体含义与钩子类型有关。
钩子函数也可以通过直接返回(TRUE)真来丢弃该消息,并阻止该消息的传递。否则的话,其他安装了钩子的应用程序将不会接收到钩子的通知而且还有可能产生不正确的结果。
<3>钩子的卸载
钩子在使用完之后需要用UnHookWindowsHookEx()卸载,否则会造成麻烦。释放钩子比较简单,UnHookWindowsHookEx()只有一个参数。函数原型如下:
UnHookWindowsHookEx
(
HHOOK hhk;
);
在易中则这样声明DLL:
.DLL命令 api_UnhookWindowsHookEx, 逻辑型, , "UnhookWindowsHookEx"
.参数 hhook, 整数型
函数成功返回(TRUE)真,否则返回(FALSE)假。
3、一些运行机制:
在Win16环境中,DLL的全局数据对每个载入它的进程来说都是相同的;而在Win32环境中,情况却发生了变化,DLL函数中的代码所创建的任何对象(包括变量)都归调用它的线程或进程所有。当进程在载入DLL时,操作系统自动把DLL地址映射到该进程的私有空间,也就是进程的虚拟地址空间,而且也复制该DLL的全局数据的一份拷贝到该进程空间。也就是说每个进程所拥有的相同的DLL的全局数据,它们的名称相同,但其值却并不一定是相同的,而且是互不干涉的。
因此,在Win32环境下要想在多个进程中共享数据,就必须进行必要的设置。在访问同一个Dll的各进程之间共享存储器是通过存储器映射文件技术实现的。也可以把这些需要共享的数据分离出来,放置在一个独立的数据段里,并把该段的属性设置为共享。必须给这些变量赋初值,否则编译器会把没有赋初始值的变量放在一个叫未被初始化的数据段中。
#pragma data_seg预处理指令用于设置共享数据段。例如:
#pragma data_seg("SharedDataName")
HHOOK hHook=NULL;
#pragma data_seg()
在#pragma data_seg("SharedDataName")和#pragma data_seg()之间的所有变量将被访问该Dll的所有进程看到和共享。再加上一条指令#pragma comment(linker,"/section:.SharedDataName,rws"),那么这个数据节中的数据可以在所有DLL的实例之间共享。所有对这些数据的操作都针对同一个实例的,而不是在每个进程的地址空间中都有一份。
当进程隐式或显式调用一个动态库里的函数时,系统都要把这个动态库映射到这个进程的虚拟地址空间里(以下简称"地址空间")。这使得DLL成为进程的一部分,以这个进程的身份执行,使用这个进程的堆栈。
4、系统钩子与线程钩子:
SetWindowsHookEx()函数的最后一个参数决定了此钩子是系统钩子还是线程钩子。
线程勾子用于监视指定线程的事件消息。线程勾子一般在当前线程或者当前线程派生的线程内。
系统勾子监视系统中的所有线程的事件消息。因为系统勾子会影响系统中所有的应用程序,所以勾子函数必须放在独立的动态链接库(DLL) 中。系统自动将包含"钩子回调函数"的DLL映射到受钩子函数影响的所有进程的地址空间中,即将这个DLL注入了那些进程。
几点说明:
(1)如果对于同一事件(如鼠标消息)既安装了线程勾子又安装了系统勾子,那么系统会自动先调用线程勾子,然后调用系统勾子。
(2)对同一事件消息可安装多个勾子处理过程,这些勾子处理过程形成了勾子链。当前勾子处理结束后应把勾子信息传递给下一个勾子函数。
(3)勾子特别是系统勾子会消耗消息处理时间,降低系统性能。只有在必要的时候才安装勾子,在使用完毕后要及时卸载。
--------------------------------------------------------------------------------
钩子类型
每一种类型的Hook可以使应用程序能够监视不同类型的系统消息处理机制。下面描述所有可以利用的Hook类型。
1、WH_CALLWNDPROC(4)和WH_CALLWNDPROCRET Hooks(12)
WH_CALLWNDPROC和WH_CALLWNDPROCRET Hooks使你可以监视发送到窗口过程的消息。系统在消息发送到接收窗口过程之前调用WH_CALLWNDPROC Hook子程,并且在窗口过程处理完消息之后调用WH_CALLWNDPROCRET Hook子程。
WH_CALLWNDPROCRET Hook传递指针到CWPRETSTRUCT结构,再传递到Hook子程。
CWPRETSTRUCT结构包含了来自处理消息的窗口过程的返回值,同样也包括了与这个消息关联的消息参数。
2、WH_CBT(5) Hook
在以下事件之前,系统都会调用WH_CBT Hook子程,这些事件包括:
1. 激活,建立,销毁,最小化,最大化,移动,改变尺寸等窗口事件;
2. 完成系统指令;
3. 来自系统消息队列中的移动鼠标,键盘事件;
4. 设置输入焦点事件;
5. 同步系统消息队列事件。
Hook子程的返回值确定系统是否允许或者防止这些操作中的一个。
3、WH_DEBUG(9) Hook
在系统调用系统中与其他Hook关联的Hook子程之前,系统会调用WH_DEBUG Hook子程。你可以使用这个Hook来决定是否允许系统调用与其他Hook关联的Hook子程。
4、WH_FOREGROUNDIDLE(11) Hook
当应用程序的前台线程处于空闲状态时,可以使用WH_FOREGROUNDIDLE Hook执行低优先级的任务。当应用程序的前台线程大概要变成空闲状态时,系统就会调用WH_FOREGROUNDIDLE Hook子程。
5、WH_GETMESSAGE(3) Hook
应用程序使用WH_GETMESSAGE Hook来监视从GetMessage or PeekMessage函数返回的消息。你可以使用WH_GETMESSAGE Hook去监视鼠标和键盘输入,以及其他发送到消息队列中的消息。
6、WH_JOURNALPLAYBACK(1) Hook
WH_JOURNALPLAYBACK Hook使应用程序可以插入消息到系统消息队列。可以使用这个Hook回放通过使用WH_JOURNALRECORD Hook记录下来的连续的鼠标和键盘事件。只要WH_JOURNALPLAYBACK Hook已经安装,正常的鼠标和键盘事件就是无效的。
WH_JOURNALPLAYBACK Hook是全局Hook,它不能象线程特定Hook一样使用。
WH_JOURNALPLAYBACK Hook返回超时值,这个值告诉系统在处理来自回放Hook当前消息之前需要等待多长时间(毫秒)。这就使Hook可以控制实时事件的回放。
WH_JOURNALPLAYBACK是system-wide local hooks,它們不會被注射到任何行程位址空間。
7、WH_JOURNALRECORD(0) Hook
WH_JOURNALRECORD Hook用来监视和记录输入事件。典型的,可以使用这个Hook记录连续的鼠标和键盘事件,然后通过使用WH_JOURNALPLAYBACK Hook来回放。
WH_JOURNALRECORD Hook是全局Hook,它不能象线程特定Hook一样使用。
WH_JOURNALRECORD是system-wide local hooks,它們不會被注射到任何行程位址空間。
8、WH_KEYBOARD(2) Hook
在应用程序中,WH_KEYBOARD Hook用来监视WM_KEYDOWN and WM_KEYUP消息,这些消息通过GetMessage or PeekMessage function返回。可以使用这个Hook来监视输入到消息队列中的键盘消息。
9、WH_KEYBOARD_LL(13) Hook
WH_KEYBOARD_LL Hook监视输入到线程消息队列中的键盘消息。
10、WH_MOUSE(7) Hook
WH_MOUSE Hook监视从GetMessage 或者 PeekMessage 函数返回的鼠标消息。使用这个Hook监视输入到消息队列中的鼠标消息。
11、WH_MOUSE_LL(14) Hook
WH_MOUSE_LL Hook监视输入到线程消息队列中的鼠标消息。
12、WH_MSGFILTER(-1) 和 WH_SYSMSGFILTER(6) Hooks
WH_MSGFILTER 和 WH_SYSMSGFILTER Hooks使我们可以监视菜单,滚动条,消息框,对话框消息并且发现用户使用ALT+TAB or ALT+ESC 组合键切换窗口。WH_MSGFILTER Hook只能监视传递到菜单,滚动条,消息框的消息,以及传递到通过安装了Hook子程的应用程序建立的对话框的消息。WH_SYSMSGFILTER Hook监视所有应用程序消息。
WH_MSGFILTER 和 WH_SYSMSGFILTER Hooks使我们可以在模式循环期间过滤消息,这等价于在主消息循环中过滤消息。
通过调用CallMsgFilter function可以直接的调用WH_MSGFILTER Hook。通过使用这个函数,应用程序能够在模式循环期间使用相同的代码去过滤消息,如同在主消息循环里一样。
13、WH_SHELL Hook(10)
外壳应用程序可以使用WH_SHELL Hook去接收重要的通知。当外壳应用程序是激活的并且当顶层窗口建立或者销毁时,系统调用WH_SHELL Hook子程。
WH_SHELL 共有5钟情況:
1. 只要有个top-level、unowned 窗口被产生、起作用、或是被摧毁;
2. 当Taskbar需要重画某个按钮;
3. 当系统需要显示关于Taskbar的一个程序的最小化形式;
4. 当目前的键盘布局状态改变;
5. 当使用者按Ctrl+Esc去执行Task Manager(或相同级别的程序)。
按照惯例,外壳应用程序都不接收WH_SHELL消息。所以,在应用程序能够接收WH_SHELL消息之前,应用程序必须调用SystemParametersInfo function注册它自己。
========================================================================================
呵呵,有点昏昏的感觉吗?不要紧的,多看几次就会好的!
好了,这期的勾子基本概念就算讲完了,让我们来总结一下:
1.钩子的基本概念及作用
钩子实际上是一个处理消息的程序段,通过系统调用,把它挂入系统。每当特定的消息发出,在没到达目的窗口前,钩子程序就先捕获该消息,亦即钩子函数先得到控制权。这时钩子函数即可以加工处理(改变)该消息,也可以不作处理而继续传递该消息,还可以强制结束消息的传递。
2.使用API函数SetWindowsHookEx()安装钩子.
在易中则这样声明DLL:
.DLL命令 SetWindowsHookExA, 整数型, , "SetWindowsHookExA"
.参数 idHook, 整数型
.参数 lpfn, 子程序指针
.参数 nMod, 整数型
.参数 dwThreadID, 整数型
3.用API函数CallNextHookEx来传递钩子
.DLL命令 CallNextHookEx, 整数型, , "CallNextHookEx"
.参数 hhook, 整数型
.参数 nCode, 整数型
.参数 wParam, 整数型
.参数 lParam, 整数型
4.用API函数UnHookWindowsHookEx()来卸载钩子
.DLL命令 api_UnhookWindowsHookEx, 逻辑型, , "UnhookWindowsHookEx"
.参数 hhook, 整数型
我们拿最常用的上面的第5个WH_GETMESSAGE(3) Hook 来说明一下:
看看下面这段易代码你就会明白的:
hMod = LoadLibraryA (取运行目录 () + “/HookDLL.dll” ) '装载动态链接库
lpProc =GetProcAddress (hMod, “GetMsgProc”) '定位钩子回调函数函数
hhook = SetWindowsHookExA (#WH_GETMESSAGE, lpProc, hMod, 0) '安装钩子
好了,这期的理论知识就到这了,请关注下期的精彩内容.
对内存进行操作的第三个机制是使用堆栈。堆栈可以用来分配许多较小的数据块。例如,若要对链接表和链接树进行管理,最好的方法是使用堆栈,堆栈的优点是,可以不考虑分配粒度和页面边界之类的问题,集中精力处理手头的任务。堆栈的缺点是,分配和释放内存块的速度比其他机制要慢,并且无法直接控制物理存储器的提交和回收。
从内部来讲,堆栈是保留的地址空间的一个区域。开始时,保留区域中的大多数页面没有被提交物理存储器。当从堆栈中进行越来越多的内存分配时,堆栈管理器将把更多的物理存储器提交给堆栈。物理存储器总是从系统的页文件中分配的,当释放堆栈中的内存块时,堆栈管理器将收回这些物理存储器。
线程的堆栈:
每当创建一个线程时,系统就会为线程的堆栈(每个线程有它自己的堆栈)保留一个堆栈空间区域,并将一些物理存储器提交给这个已保留的区域。按照默认设置,系统保留1 MB的地址空间并提交两个页面的内存。但是,这些默认值是可以修改的,方法是在你链接应用程序时设定M i c r o s o f t的链接程序的/ S TA C K选项:
/STACK:reserve[,commit]
当创建一个线程的堆栈时,系统将会保留一个链接程序的/ S TA C K开关指明的地址空间区域。
进程的默认堆栈
当进程初始化时,系统在进程的地址空间中创建一个堆栈。该堆栈称为进程的默认堆栈。按照默认设置,该堆栈的地址空间区域的大小是1 MB。但是,系统可以扩大进程的默认堆栈,使它大于其默认值。当创建应用程序时,可以使用/ H E A P链接开关,改变堆栈的1 M B默认区域大小。由于D L L没有与其相关的堆栈,所以当链接D L L时,不应该使用/ H E A P链接开关。/ H E A P链接开关的句法如下:
/HEAP:reserve[,commit]
许多Wi n d o w s函数要求进程使用其默认堆栈。特别是widows提供的API。对默认堆栈的访问是顺序进行的。换句话说,系统必须保证在规定的时间内,每次只有一个线程能够分配和释放默认堆栈中的内存块。如果两个线程试图同时分配默认堆栈中的内存块,那么只有一个线程能够分配内存块,另一个线程必须等待第一个线程的内存块分配之后,才能分配它的内存块。一旦第一个线程的内存块分配完,堆栈函数将允许第二个线程分配内存块。这种顺序访问方法对速度有一定的影响。如果你的应用程序只有一个线程,并且你想要以最快的速度访问堆栈,那么应该创建你自己的独立的堆栈,不要使用进程的默认堆栈。
单个进程可以同时拥有若干个堆栈。这些堆栈可以在进程的寿命期中创建和撤消。但是,默认堆栈是在进程开始执行之前创建的,并且在进程终止运行时自动被撤消。不能撤消进程的默认堆栈。每个堆栈均用它自己的堆栈句柄来标识,用于分配和释放堆栈中的内存块的所有堆栈函数都需要这个堆栈句柄作为其参数。
可以通过调用G e t P r o c e s s H e a p函数获取你的进程默认堆栈的句柄:
HANDLE GetProcessHeap();
为什么要创建辅助堆栈
除了进程的默认堆栈外,可以在进程的地址空间中创建一些辅助堆栈。由于下列原因,你可能想要在自己的应用程序中创建一些辅助堆栈:
? 保护组件。
? 更加有效地进行内存管理。
? 进行本地访问。
? 减少线程同步的开销。
? 迅速释放。
保护组件
通过创建多个独立的堆栈,是数据隔离,且相互独立的操作。
更有效的内存管理
通过在堆栈中分配同样大小的对象,就可以更加有效地管理堆栈。就是把大小相同的对象放在一个堆栈中进行分配。
进行本地访问
每当系统必须在R A M与系统的页文件之间进行R A M页面的交换时,系统的运行性能就会受到很大的影响。如果经常访问局限于一个小范围地址的内存,那么系统就不太可能需要在R A M与磁盘之间进行页面的交换。
所以,在设计应用程序的时候,如果有些数据将被同时访问,那么最好把它们分配在互相靠近的位置上。
减少线程同步的开销
正如下面就要介绍的那样,按照默认设置,堆栈是顺序运行的,这样,如果多个线程试图同时访问堆栈,就不会使数据受到破坏。但是,堆栈函数必须执行额外的代码,以保证堆栈对线程的安全性。如果要进行大量的堆栈分配操作,那么执行这些额外的代码会增加很大的负担,从而降低你的应用程序的运行性能。当你创建一个新堆栈时,可以告诉系统,只有一个线程将访问该堆栈,因此额外的代码将不执行。(就是用多个堆栈来减少同步的性能消耗)
迅速释放堆栈
最后要说明的是,将专用堆栈用于某些数据结构后,就可以释放整个堆栈,而不必显式释放堆栈中的每个内存块。例如,当Windows Explorer遍历硬盘驱动器的目录层次结构时,它必须在内存中建立一个树状结构。如果你告诉Windows Explorer刷新它的显示器,它只需要撤消包含这个树状结构的堆栈并且重新运行即可(当然,假定它将专用堆栈用于存放目录树信息)。对于许多应用程序来说,这是非常方便的,并且它们也能更快地运行。
如何创建辅助堆栈
你可以在进程中创建辅助堆栈,方法是让线程调用H e a p C r e a t e函数:
HANDLE HeapCreate( DWORD fdwOptions, SIZE_T dwInitialSize, SIZE_T dwMaximumSize);
当试图从堆栈分配一个内存块时, H e a p A l l o c函数(下面将要介绍)必须执行下列操作:
1) 遍历分配的和释放的内存块的链接表。
2) 寻找一个空闲内存块的地址。
3) 通过将空闲内存块标记为“已分配”分配新内存块。
4) 将新内存块添加给内存块链接表。
从堆栈中分配内存块
若要从堆栈中分配内存块,只需要调用H e a p A l l o c函数:
PVOID HeapAlloc( HANDLE hHeap, DWORD fdwFlags, SIZE_T dwBytes);
改变内存块的大小
常常需要改变内存块的大小。有些应用程序开始时分配的内存块比较大,然后,当所有数据放入内存块后,再缩小内存块的大小。有些应用程序开始时分配的内存块比较小,后来需要将更多的数据拷贝到内存块中去时,再设法扩大它的大小。如果要改变内存块的大小,可以调用H e a p R e A l l o c函数:
PVOID HeapReAlloc( HANDLE hHeap, DWORD fdwFlags, PVOID pvMem, SIZE_T dwBytes);
了解内存块的大小
当内存块分配后,可以调用H e a p S i z e函数来检索内存块的实际大小:
SIZE_T HeapSize( HANDLE hHeap, DWORD fdwFlags, LPCVOID pvMem);
释放内存块
当不再需要内存块时,可以调用H e a p F r e e函数将它释放:
BOOL HeapFree( HANDLE hHeap, DWORD fdwFlags, PVOID pvMem);
撤消堆栈
如果应用程序不再需要它创建的堆栈,可以通过调用H e a p D e s t r o y函数将它撤消:
BOOL HeapDestroy(HANDLE hHeap);
调用H e a p D e s t r o y函数可以释放堆栈中包含的所有内存块,也可以将堆栈占用的物理存储器和保留的地址空间区域重新返回给系统。如果该函数运行成功, H e a p D e s t r o y返回T R U E。如果在进程终止运行之前没有显式撤消堆栈,那么系统将为你将它撤消。但是,只有当进程终止运行时,堆栈才能被撤消。如果线程创建了一个堆栈,当线程终止运行时,该堆栈将不会被撤消。
在进程完全终止运行之前,系统不允许进程的默认堆栈被撤消。如果将进程的默认堆栈的句柄传递给H e a p D e s t r o y函数,系统将忽略对该函数的调用。
由于进程的地址空间中可以存在多个堆栈,因此可以使用G e t P r o c e s s H e a p s函数来获取现有堆栈的句柄:
DWORD GetProcessHeaps( DWORD dwNumHeaps, PHANDLE pHeaps);
若要调用G e t P r o c e s s H e a p s函数,必须首先分配一个H A N D L E数组,然后调用下面的函数:
HANDLE hHeaps[25];DWORD dwHeaps = GetProcessHeaps(25, hHeaps);if(dwHeaps > 5) { //More heaps are in this process than we expected.} else{ //hHeaps[0] through hHeap[dwHeaps - 1] //identify the existing heaps.}
注意,当该函数返回时,你的进程的默认堆栈的句柄也包含在堆栈句柄的数组中。
H e a p Va l i d a t e函数用于验证堆栈的完整性:
BOOL HeapValidate( HANDLE hHeap, DWORD fdwFlags, LPCVOID pvMem);
调用该函数时,通常要传递一个堆栈句柄,一个值为0的标志(唯一的另一个合法标志是H E A P _ N O _ S E R I A L I Z E),并且为p v M e m传递N U L L。然后,该函数将遍历堆栈中的内存块以确保所有内存块都完好无损。为了使该函数运行得更快,可以为参数p v M e m传递一个特定的内存块的地址。这样做可使该函数只检查单个内存块的有效性。
若要合并地址中的空闲内存块并收回不包含已经分配的地址内存块的存储器页面,可以调用下面的函数:
UINT HeapCompact( HANDLE hHeap, DWORD fdwFlags);
通常情况下,可以为参数f d w F l a g s传递0,但是也可以传递H E A P _ N O _ S E R I A L I Z E。
下面两个函数H e a p L o c k和H e a p U n l o c k是结合在一起使用的:
BOOL HeapLock(HANDLE hHeap);BOOL HeapUnlock(HANDLE hHeap);
这些函数是用于线程同步的。当调用H e a p L o c k函数时,调用线程将成为特定堆栈的所有者。如果其他任何线程调用堆栈函数(设定相同的堆栈句柄),系统将暂停调用线程的运行,并且在堆栈被H e a p U n l o c k函数解锁之前不允许它醒来。
H e a p A l l o c、H e a p S i z e和H e a p F r e e等函数在内部调用H e a p L o c k和H e a p U n l o c k函数来确保对堆栈的访问能够顺序进行。自己调用H e a p L o c k或H e a p U n l o c k这种情况是不常见的。
最后一个堆栈函数是H e a p Wa l k:
BOOL HeapWalk( HANDLE hHeap, PPROCESS_HEAP_ENTRY pHeapEntry);
该函数只用于调试目的。它使你能够遍历堆栈的内容。可以多次调用该函数。