Kylin 的架构和原理

1. Kylin的设计思想

1.1 与其他开源大数据框架设计思想的对比

Kylin 的架构和原理_第1张图片
解决大数据不断增长中高速查询的能力。
怎么保证随着数据量的增长,怎么保证在未来的数据查询性能不受影响。
从算法角度讲,现有的大数据框架可分为以下几类:
1.并行计算:mapreduce、spark
2.列式存储:parquet,节省IO
3.(倒排)索引:节省IO
这三种在集群规模不变的情况下,随着数据的无限增长,查询性能也会线性的下降。比如,数据增长十倍,查询意味着我们扫描的数据量也增长了十倍,这就必然影响查询的效率。从算法时间复杂度讲,还是一个O(N)的问题,解决这个问题,Kylin提出来预计算的思路。
4.预计算:事先将增长的数据量在离线的情况做完,那么用户再来查询的时就可以减少工作量。

1.2 Kylin预计算思想的具体细节

Kylin 的架构和原理_第2张图片

数据建模,这对Kylin用户来说是最重要的工作。
使用关系数据库模型中的星型模型
模型决定了预计算的边界,给定了预计算的范围,内容。从而穷尽所有的计算量,实现预计算。

cube模型:多维立方体理论
有事实表,维度,度量,定义了维度和度量之后就可以做各种维度的排列组合和预计算,

预计算的结果存储在Hbase中,用户查询的结果直接从cube中反馈

cube的设计:
cube的设计过程示例:

Kylin 的架构和原理_第3张图片

Kylin 的架构和原理_第4张图片

Kylin 的架构和原理_第5张图片

Kylin 的架构和原理_第6张图片

Kylin 的架构和原理_第7张图片

另外Kylin还提供了工作管理、web查询界面以及简单的可视化。可视化方面Kylin可以与Tableu集成。

Kylin特性:高并发,低延迟。

2. 工作原理

目标:提供稳定的大数据查询

2.1 引言:物化视图

一个常用的3维立方体,包含:时间、地点、产品
Kylin 的架构和原理_第8张图片

Cuboid = one combination of dimensions
Cube = all combination of dimensions (all cuboids)

Kylin 的架构和原理_第9张图片

Base vs. aggregate cells; ancestor vs. descendant cells; parent vs. child cells

(9/15, milk, Urbana, Dairy_land)  - 
(9/15, milk, Urbana, *)  - 
(*, milk, Urbana, *)  - 
(*, milk, Chicago, *) - 
(*, milk, *, *)  - 

2.2 Kylin的架构

数据源:hive or kafka
计算框架:mapreduce、spark,目前主要用mapreduce,因为spark和mapreduce性能差不多。
结果:存储在HBase中
对外查询接口:REST、JDBC、ODBC

Kylin 的架构和原理_第10张图片

Kylin 的架构和原理_第11张图片

2.3 cube构建工作流

Kylin 的架构和原理_第12张图片

2.4 cube存储

Kylin 的架构和原理_第13张图片

Kylin 的架构和原理_第14张图片

2.5 Kylin的查询引擎:Calcite

关于Calcite的简介:http://www.infoq.com/cn/articles/new-big-data-hadoop-query-engine-apache-calcite

Calcite的apche社区:http://calcite.apache.org/

Calcite架构

Kylin 的架构和原理_第15张图片

Kylin对Calcite的优化

3. 调优

3.3 增量构建

4. 1.6版本新特性

可以接入kafka数据源,可以按分钟做增量构建

你可能感兴趣的:(kylin)