一.准备工作
对于Linux操作系统
1.安装Python
2.安装依赖库,命令如下:
yum install cmake gcc gcc-c++ gtk2-devel gimp-develgimp-devel-tools gimp-help-browser zlib-devel libtiff-devel libjpeg-devellibpng-devel gstreamer-devel libavc1394-devel libraw1394-devel libdc1394-develjasper-devel jasper-utils swig python libtool nasm
3.安装opencv
1、下载 http://sourceforge.net/projects/opencvlibrary/files/opencv-unix/2.4.9/opencv-2.4.9.zip/download
并解压opencv2.49
2、安装依赖的库sudo apt-get install build-essential cmake libgtk2.0-dev pkg-config python-dev python-numpy libavcodec-dev libavformat-dev libswscale-dev
3、安装opencv
cd opencv2.49
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..
make
sudo make install
3、拷贝cv2.so (查找其路径的命令 find / -name cv2.so )
cp /usr/local/lib/python2.7/site-packages/cv* /usr/local/lib/python2.7/site-packages/ #第二个路径是根据你使用的Python的site-packages目录位置决定的,如果你使用的是anaconda ,复制cv2.so 到anaconda下的site-packages下
二.python 程序如下
import cv2
import sys
path=sys.argv[1]
face_patterns = cv2.CascadeClassifier('/usr/local/opt/opencv3/share/OpenCV/haarcascades/haarcascade_frontalface_default.xml')
sample_image = cv2.imread(path)
faces = face_patterns.detectMultiScale(sample_image,scaleFactor=1.1,minNeighbors=5,minSize=(100, 100))cv2.imwrite('/Users/abel/test.png', sample_image);
保存为face-rg.py
$python face-rg.py /home/maicaijian/test_1.jpg #命令后面的路径是图片的路径
运行效果如下: