使用Kafka-Connector导数据

从mysql导数据到kafka

1、kafka confluent 

  介绍  link

     。。。

2、kafka connector-jdbc 

  介绍 link

    先安装kafka,然后下载confluent的包,默认这个安装包中已经包含了kafka、zookeeper等一些列kafka相关的东西。看实际情况。我这里是已经自己安装了apache kafka 。

  启动 schema.registry服务

 通过standalone模式启动jdbc-Connector

 bin/connect-standalone  etc/schema-registry/connect-avro-standalone.properties etc/kafka-connect-jdbc/quickstart-mysql.properties 
 
 vi etc/kafka-connect-jdbc/quickstart-mysql.properties 
name=test-mysql-jdbc-autoincrement
connector.class=io.confluent.connect.jdbc.JdbcSourceConnector
tasks.max=1
connection.url=jdbc:mysql://192.168.0.35:3306/test?user=root&password=
mode=incrementing
incrementing.column.name=id
topics=t_resources
topic.prefix=test-mysql
table.whitelist=t_resources

3、通过java读取 Connector-jdbc写入的数据

  需要confluent的jar。

        
  io.confluent
  kafka-avro-serializer
  3.1.1

package com.test.kafka;

import java.util.Collections;
import java.util.Properties;

import org.apache.avro.generic.GenericData;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
 
/**
 * reference https://www.iteblog.com on 2017-09-20.
 */
public class AvroKafkaConsumer09 {
    public static void main(String[] args) {
        Logger logger = LoggerFactory.getLogger("AvroKafkaConsumer");
        Properties props = new Properties();
        props.put("bootstrap.servers", "192.168.0.83:9092");
        props.put("group.id", "testgroup");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
       // props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "io.confluent.kafka.serializers.KafkaAvroDeserializer");
        props.put("schema.registry.url", "http://192.168.0.83:8081");
       
        KafkaConsumer consumer = new KafkaConsumer<>(props);
        String topic = "test-mysqlt_resources";
       // consumer.subscribe(Collections.singletonList(topic));
//        Schema.Parser parser = new Schema.Parser();
//        Schema schema = parser.parse(AvroKafkaProducter.USER_SCHEMA);
//        Injection recordInjection = GenericAvroCodecs.toBinary(schema);
// 
        try {
        	consumer.assign(Collections.singletonList( new TopicPartition( topic, 0) ) );
        	consumer.seek( new TopicPartition( topic, 0), 0L ); //add
            while (true) {
                ConsumerRecords records = consumer.poll(1000);
                for (ConsumerRecord record : records) {
                	
                	logger.info(  record.key()+ ">Tostring:"+  record.value().toString() +"\n"  );
                	
//                    GenericRecord genericRecord = recordInjection.invert(record.value()).get();
//                    logger.info(   "Tostring:"+genericRecord.toString()+"\n"  );
                }
            }
        } finally {
            consumer.close();
        }
    }
}

4、通过distributed模式运行connect

   

1、connect-avro-distributed.properties

 注意配置项:

plugin.path=/root/kafka/tools/confluent-4.0.0/share/java #绝对路径,/root/kafka/tools/confluent-4.0.0 为confluent安装目录

2、启动connect-distributed 

cd confluent安装目录

[root@server confluent-4.0.0]# nohup ./bin/connect-distributed ./etc/schema-registry/connect-avro-distributed.properties > /tmp/kafka-cluster-connect.log &

3、REST-API管理connector 

  

curl -X POST -H "Content-Type: application/json" --data '{"name": "test-mysql-jdbc-autoincrement","config": {"connector.class": "JdbcSourceConnector","connection.url": "jdbc:mysql://192.168.0.15:3306/test?user=root&password=","tasks.max": "1","mode": "incrementing","incrementing.column.name": "id","topic.prefix": "t_resources","table.whitelist": "test-mysql","topics": "connect-test"}}' http://localhost:8083/connectors

详细 link 


你可能感兴趣的:(Java)