JDK1.7ConcurrentHashMap源码分析

机制:分段加锁

Segment

Segment的定义如下:

/**
     * Segments are specialized versions of hash tables.  This
     * subclasses from ReentrantLock opportunistically, just to
     * simplify some locking and avoid separate construction.
     */
    static final class Segment extends ReentrantLock implements Serializable {
        /*
         * Segments maintain a table of entry lists that are always
         * kept in a consistent state, so can be read (via volatile
         * reads of segments and tables) without locking.  This
         * requires replicating nodes when necessary during table
         * resizing, so the old lists can be traversed by readers
         * still using old version of table.
         *
         * This class defines only mutative methods requiring locking.
         * Except as noted, the methods of this class perform the
         * per-segment versions of ConcurrentHashMap methods.  (Other
         * methods are integrated directly into ConcurrentHashMap
         * methods.) These mutative methods use a form of controlled
         * spinning on contention via methods scanAndLock and
         * scanAndLockForPut. These intersperse tryLocks with
         * traversals to locate nodes.  The main benefit is to absorb
         * cache misses (which are very common for hash tables) while
         * obtaining locks so that traversal is faster once
         * acquired. We do not actually use the found nodes since they
         * must be re-acquired under lock anyway to ensure sequential
         * consistency of updates (and in any case may be undetectably
         * stale), but they will normally be much faster to re-locate.
         * Also, scanAndLockForPut speculatively creates a fresh node
         * to use in put if no node is found.
         */

        private static final long serialVersionUID = 2249069246763182397L;

        /**
         * The maximum number of times to tryLock in a prescan before
         * possibly blocking on acquire in preparation for a locked
         * segment operation. On multiprocessors, using a bounded
         * number of retries maintains cache acquired while locating
         * nodes.
         */
        static final int MAX_SCAN_RETRIES =
            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;

        /**
         * The per-segment table. Elements are accessed via
         * entryAt/setEntryAt providing volatile semantics.
         */
        transient volatile HashEntry[] table;

        /**
         * The number of elements. Accessed only either within locks
         * or among other volatile reads that maintain visibility.
         */
        transient int count;

        /**
         * The total number of mutative operations in this segment.
         * Even though this may overflows 32 bits, it provides
         * sufficient accuracy for stability checks in CHM isEmpty()
         * and size() methods.  Accessed only either within locks or
         * among other volatile reads that maintain visibility.
         */
        transient int modCount;

        /**
         * The table is rehashed when its size exceeds this threshold.
         * (The value of this field is always (int)(capacity *
         * loadFactor).)
         */
        transient int threshold;

        /**
         * The load factor for the hash table.  Even though this value
         * is same for all segments, it is replicated to avoid needing
         * links to outer object.
         * @serial
         */
        final float loadFactor;

        Segment(float lf, int threshold, HashEntry[] tab) {
            this.loadFactor = lf;
            this.threshold = threshold;
            this.table = tab;
        }

        final V put(K key, int hash, V value, boolean onlyIfAbsent) {
            HashEntry node = tryLock() ? null :
                scanAndLockForPut(key, hash, value);
            V oldValue;
            try {
                HashEntry[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry first = entryAt(tab, index);
                for (HashEntry e = first;;) {
                    if (e != null) {
                        K k;
                        if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {
                            oldValue = e.value;
                            if (!onlyIfAbsent) {
                                e.value = value;
                                ++modCount;
                            }
                            break;
                        }
                        e = e.next;
                    }
                    else {
                        if (node != null)
                            node.setNext(first);
                        else
                            node = new HashEntry(hash, key, value, first);
                        int c = count + 1;
                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                            rehash(node);
                        else
                            setEntryAt(tab, index, node);
                        ++modCount;
                        count = c;
                        oldValue = null;
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }

        /**
         * Doubles size of table and repacks entries, also adding the
         * given node to new table
         */
        @SuppressWarnings("unchecked")
        private void rehash(HashEntry node) {
            /*
             * Reclassify nodes in each list to new table.  Because we
             * are using power-of-two expansion, the elements from
             * each bin must either stay at same index, or move with a
             * power of two offset. We eliminate unnecessary node
             * creation by catching cases where old nodes can be
             * reused because their next fields won't change.
             * Statistically, at the default threshold, only about
             * one-sixth of them need cloning when a table
             * doubles. The nodes they replace will be garbage
             * collectable as soon as they are no longer referenced by
             * any reader thread that may be in the midst of
             * concurrently traversing table. Entry accesses use plain
             * array indexing because they are followed by volatile
             * table write.
             */
            HashEntry[] oldTable = table;
            int oldCapacity = oldTable.length;
            int newCapacity = oldCapacity << 1;
            threshold = (int)(newCapacity * loadFactor);
            HashEntry[] newTable =
                (HashEntry[]) new HashEntry[newCapacity];
            int sizeMask = newCapacity - 1;
            for (int i = 0; i < oldCapacity ; i++) {
                HashEntry e = oldTable[i];
                if (e != null) {
                    HashEntry next = e.next;
                    int idx = e.hash & sizeMask;
                    if (next == null)   //  Single node on list
                        newTable[idx] = e;
                    else { // Reuse consecutive sequence at same slot
                        HashEntry lastRun = e;
                        int lastIdx = idx;
                        for (HashEntry last = next;
                             last != null;
                             last = last.next) {
                            int k = last.hash & sizeMask;
                            if (k != lastIdx) {
                                lastIdx = k;
                                lastRun = last;
                            }
                        }
                        newTable[lastIdx] = lastRun;
                        // Clone remaining nodes
                        for (HashEntry p = e; p != lastRun; p = p.next) {
                            V v = p.value;
                            int h = p.hash;
                            int k = h & sizeMask;
                            HashEntry n = newTable[k];
                            newTable[k] = new HashEntry(h, p.key, v, n);
                        }
                    }
                }
            }
            int nodeIndex = node.hash & sizeMask; // add the new node
            node.setNext(newTable[nodeIndex]);
            newTable[nodeIndex] = node;
            table = newTable;
        }

        /**
         * Scans for a node containing given key while trying to
         * acquire lock, creating and returning one if not found. Upon
         * return, guarantees that lock is held. UNlike in most
         * methods, calls to method equals are not screened: Since
         * traversal speed doesn't matter, we might as well help warm
         * up the associated code and accesses as well.
         *
         * @return a new node if key not found, else null
         */
        private HashEntry scanAndLockForPut(K key, int hash, V value) {
            HashEntry first = entryForHash(this, hash);
            HashEntry e = first;
            HashEntry node = null;
            int retries = -1; // negative while locating node
            while (!tryLock()) {
                HashEntry f; // to recheck first below
                if (retries < 0) {
                    if (e == null) {
                        if (node == null) // speculatively create node
                            node = new HashEntry(hash, key, value, null);
                        retries = 0;
                    }
                    else if (key.equals(e.key))
                        retries = 0;
                    else
                        e = e.next;
                }
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                else if ((retries & 1) == 0 &&
                         (f = entryForHash(this, hash)) != first) {
                    e = first = f; // re-traverse if entry changed
                    retries = -1;
                }
            }
            return node;
        }

        /**
         * Scans for a node containing the given key while trying to
         * acquire lock for a remove or replace operation. Upon
         * return, guarantees that lock is held.  Note that we must
         * lock even if the key is not found, to ensure sequential
         * consistency of updates.
         */
        private void scanAndLock(Object key, int hash) {
            // similar to but simpler than scanAndLockForPut
            HashEntry first = entryForHash(this, hash);
            HashEntry e = first;
            int retries = -1;
            while (!tryLock()) {
                HashEntry f;
                if (retries < 0) {
                    if (e == null || key.equals(e.key))
                        retries = 0;
                    else
                        e = e.next;
                }
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                else if ((retries & 1) == 0 &&
                         (f = entryForHash(this, hash)) != first) {
                    e = first = f;
                    retries = -1;
                }
            }
        }

        /**
         * Remove; match on key only if value null, else match both.
         */
        final V remove(Object key, int hash, Object value) {
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry e = entryAt(tab, index);
                HashEntry pred = null;
                while (e != null) {
                    K k;
                    HashEntry next = e.next;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        V v = e.value;
                        if (value == null || value == v || value.equals(v)) {
                            if (pred == null)
                                setEntryAt(tab, index, next);
                            else
                                pred.setNext(next);
                            ++modCount;
                            --count;
                            oldValue = v;
                        }
                        break;
                    }
                    pred = e;
                    e = next;
                }
            } finally {
                unlock();
            }
            return oldValue;
        }

        final boolean replace(K key, int hash, V oldValue, V newValue) {
            if (!tryLock())
                scanAndLock(key, hash);
            boolean replaced = false;
            try {
                HashEntry e;
                for (e = entryForHash(this, hash); e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        if (oldValue.equals(e.value)) {
                            e.value = newValue;
                            ++modCount;
                            replaced = true;
                        }
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return replaced;
        }

        final V replace(K key, int hash, V value) {
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry e;
                for (e = entryForHash(this, hash); e != null; e = e.next) {
                    K k;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        oldValue = e.value;
                        e.value = value;
                        ++modCount;
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }

        final void clear() {
            lock();
            try {
                HashEntry[] tab = table;
                for (int i = 0; i < tab.length ; i++)
                    setEntryAt(tab, i, null);
                ++modCount;
                count = 0;
            } finally {
                unlock();
            }
        }
    }

Segment内部持有HashMap的字段,比如长度、加载因子、阈值等等,并且其中方法包含put、remove、replace,所以可以猜测,ConcurrentHashMap将方法接口委托给了Segment,下面可以具体分析。Segment继承自ReentrantLock,拥有可重入锁的性质。

ConcurrentHashMap构造方法

ConcurrentHashMap的构造方法主要需要对三个字段进行赋值,分别是容量、加载因子和并发参数,其中前两个参数好理解,后一个参数下面具体介绍。

 public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // ssize最终是2的指数倍数,如果并发因素为16,那么该ssize将会得到16
        int sshift = 0;
        int ssize = 1;
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1;
        }
        this.segmentShift = 32 - sshift;
        this.segmentMask = ssize - 1;
        //判断初始容量
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)
            cap <<= 1;
        // create segments and segments[0]
        Segment s0 =
            new Segment(loadFactor, (int)(cap * loadFactor),
                             (HashEntry[])new HashEntry[cap]);
        Segment[] ss = (Segment[])new Segment[ssize];
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }


    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
    }


    public ConcurrentHashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }


    public ConcurrentHashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }


    public ConcurrentHashMap(Map m) {
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                      DEFAULT_INITIAL_CAPACITY),
             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
        putAll(m);
    }

从上面可以看到,默认的ConcurrentHashMap的初始容量为16,加载因子为0.75,并发参数为16。其余的方法分别可以设置这几个值,最终都会调用第一个构造方法。
如果调用默认的构造方法,那么最终得到的segments将是一个尺寸为16的数组,并且第一个元素为s0,其第三个参数是一个尺寸为2的数组。
可以发现ConcurrentHashMap和1.8中区别,1.7中没有table数组这样的字段,只有segments这样的字段

put(K,V)

ConcureentHashMap的put方法如下所示:

public V put(K key, V value) {
        Segment s;
        //不允许value为null
        if (value == null)
            throw new NullPointerException();
        //计算hash值
        int hash = hash(key);
        int j = (hash >>> segmentShift) & segmentMask;
        //如果Segment不存在,调用ensureSegment方法
        if ((s = (Segment)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
            s = ensureSegment(j);
        //调用Segment的put方法插入键值对
        return s.put(key, hash, value, false);
    }

从上面的put方法可以得出几点:
1. value值不允许为null
2. UNSAFE采取的是CAS算法实现的线程安全,一旦getObject为null了,即说明有并发了,那么将调用ensureSegment()使用自旋的方式获取Segment。
下面首先看一下,ensureSegment()方法是如何最终返回一个Segment的。该方法的实现如下:

private Segment ensureSegment(int k) {
        final Segment[] ss = this.segments;
        long u = (k << SSHIFT) + SBASE; // raw offset
        Segment seg;
        //如果该索引处还未存在Segment,那么将创建一个Segment
        if ((seg = (Segment)UNSAFE.getObjectVolatile(ss, u)) == null) {
            //在构造方法中,初始化了一个s0对象作为原型
            Segment proto = ss[0]; // use segment 0 as prototype
            int cap = proto.table.length;
            float lf = proto.loadFactor;
            int threshold = (int)(cap * lf);
            HashEntry[] tab = (HashEntry[])new HashEntry[cap];
            //再次检查
            if ((seg = (Segment)UNSAFE.getObjectVolatile(ss, u))
                == null) { // recheck
                //新建一个Segment,参数可以发现与s0相同
                Segment s = new Segment(lf, threshold, tab);
                //自旋插入,一旦插入,则跳出循环
                while ((seg = (Segment)UNSAFE.getObjectVolatile(ss, u))
                       == null) {
                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
                        break;
                }
            }
        }
        return seg;
    }

从ensureSegment()方法可以看到,根据索引去Segments中取Segment,如果还没有创建Segment,那么将执行新建,然后自旋插入;而如果存在Segment,那么将自旋获取该Segment。
其中创建的Segment与s0相同,而s0最初的状态是在构造方法中指定的。
当Segment创建好后,再看Segment的put方法,其实现如下:

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
            //尝试获取锁,如果获取到锁,那么node为null,否则调用scanAndLockForPut方法
            HashEntry node = tryLock() ? null :
                scanAndLockForPut(key, hash, value);
            V oldValue;
            try {
                HashEntry[] tab = table;
                //计算位于本Segment中的Table中的索引
                int index = (tab.length - 1) & hash;
                //得到链表首节点
                HashEntry first = entryAt(tab, index);
                //遍历
                for (HashEntry e = first;;) {
                    if (e != null) {
                        K k;
                        //如果匹配,那么更改并跳出循环
                        if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {
                            oldValue = e.value;
                            if (!onlyIfAbsent) {
                                e.value = value;
                                ++modCount;
                            }
                            break;
                        }
                        e = e.next;
                    }
                    //如果到了链表尾部,仍然没有找到一个匹配元素,那么新插入
                    else {
                        //如果node不为null,重用node,指向链表头节点
                        if (node != null)
                            node.setNext(first);
                        //如果为null,那么新建一个节点
                        else
                            node = new HashEntry(hash, key, value, first);
                        int c = count + 1;
                        //如果超过了阈值并且表格长度小于最大容量,那么执行rehash操作
                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                            rehash(node);
                        //否则,将node节点更新到table中
                        else
                            setEntryAt(tab, index, node);
                        ++modCount;
                        count = c;
                        oldValue = null;
                        break;
                    }
                }
            } finally {
                //释放锁
                unlock();
            }
            return oldValue;
        }

从上面可以看到Segment的put操作的流程:
1. 调用tryLock()方法获取锁,一旦获取到锁后,node为null,那么执行下面的插入操作;
2. 如果tryLock()方法获取失败,即目前有线程正在持有该Segment,那么调用scanAndLockForPut()方法;
3. 插入过程中,需要遍历链表,如果是新节点,则会作为链表的头节点
4. 插入一个节点后,如果需要进行rehash操作,则会调用rehash()方法,否则就是将链表更新到表中
5. 最后释放锁

下面看一下scanAndLockForPut()方法是如何在Segment被其他线程使用时扫描获取到锁的,其实现如下:

 private HashEntry scanAndLockForPut(K key, int hash, V value) {
            //得到待插入桶的头节点
            HashEntry first = entryForHash(this, hash);
            HashEntry e = first;
            HashEntry node = null;
            int retries = -1; // negative while locating node
            //不断尝试tryLock()方法
            while (!tryLock()) {
                //如果失败
                HashEntry f; // to recheck first below
                if (retries < 0) {
                    if (e == null) {
                        if (node == null) // speculatively create node
                            node = new HashEntry(hash, key, value, null);
                        retries = 0;
                    }
                    else if (key.equals(e.key))
                        retries = 0;
                    else
                        e = e.next;
                }
                //如果重试次数很多后,那么调用lock()方法加入到ReetrantLock的等待队列中,跳出循环
                else if (++retries > MAX_SCAN_RETRIES) {
                    lock();
                    break;
                }
                else if ((retries & 1) == 0 &&
                         (f = entryForHash(this, hash)) != first) {
                    e = first = f; // re-traverse if entry changed
                    retries = -1;
                }
            }
            return node;
        }

从scanAndLockForPut()方法主要完成扫描和获取锁,一旦该方法返回,表明已经获取到锁了。
下面看一下rehash方法,看一个Segment中是如何进行rehash操作的,其实现如下:

 private void rehash(HashEntry node) {

            HashEntry[] oldTable = table;
            int oldCapacity = oldTable.length;
            //新容量为旧容量的2倍
            int newCapacity = oldCapacity << 1;
            //新的阈值为新容量*加载因子
            threshold = (int)(newCapacity * loadFactor);
            //创建新表
            HashEntry[] newTable =
                (HashEntry[]) new HashEntry[newCapacity];
            int sizeMask = newCapacity - 1;
            //对旧表做遍历
            for (int i = 0; i < oldCapacity ; i++) {
                //得到桶中元素
                HashEntry e = oldTable[i];
                //如果该桶中存在元素,需要做转移操作
                if (e != null) {
                    //头节点的下一个节点
                    HashEntry next = e.next;
                    //得到在新表中的位置
                    int idx = e.hash & sizeMask;
                    //链表中只存在一个节点,将链表头节点赋值到新表中即可
                    if (next == null)   //  Single node on list
                        newTable[idx] = e;
                    //存在后续节点
                    else { // 重用在一个桶中连续的序列
                        HashEntry lastRun = e;
                        int lastIdx = idx;
                        for (HashEntry last = next;
                             last != null;
                             last = last.next) {
                            int k = last.hash & sizeMask;
                            if (k != lastIdx) {
                                lastIdx = k;
                                lastRun = last;
                            }
                        }
                        newTable[lastIdx] = lastRun;
                        // 克隆剩余节点
                        for (HashEntry p = e; p != lastRun; p = p.next) {
                            V v = p.value;
                            int h = p.hash;
                            int k = h & sizeMask;
                            HashEntry n = newTable[k];
                            newTable[k] = new HashEntry(h, p.key, v, n);
                        }
                    }
                }
            }
            int nodeIndex = node.hash & sizeMask; // add the new node
            node.setNext(newTable[nodeIndex]);
            newTable[nodeIndex] = node;
            //更改新表指向
            table = newTable;
        }

从上面可以看到,rehash时容量会扩大一倍。在对旧元素重新hash获取桶的位置时,不太明白为什么要做两次遍历,区分出连续的序列。完全可以使用另外的方法进行区分,比如1.8中的分配方法。

get(K)

看完了ConcurrentHashMap的put方法后,可以再看一下get方法是如何实现的,get方法是不加锁的,其实现如下:

public V get(Object key) {
        Segment s; // manually integrate access methods to reduce overhead
        HashEntry[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        //根据位置取Segment的索引
        if ((s = (Segment)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            //遍历
            for (HashEntry e = (HashEntry) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }

ConcurrentHashMap的get方法是不加锁的,所以只要Segment不为null,那么就做一个遍历即可。

size()方法

由于ConcureentHashMap中管理Segment,而Segment又管理HashEntry数组,所以ConcurrentHashMap的size()方法应该是累加每一个Segment中的元素个数,其实现如下:

public int size() {
        //复制一份拷贝
        final Segment[] segments = this.segments;
        int size;
        boolean overflow; // true if size overflows 32 bits
        long sum;         // sum of modCounts
        long last = 0L;   // previous sum
        int retries = -1; // first iteration isn't retry
        try {
            //死循环
            for (;;) {
                if (retries++ == RETRIES_BEFORE_LOCK) {
                    for (int j = 0; j < segments.length; ++j)
                        ensureSegment(j).lock(); // force creation
                }
                sum = 0L;
                size = 0;
                overflow = false;
                //遍历Segments
                for (int j = 0; j < segments.length; ++j) {
                    Segment seg = segmentAt(segments, j);
                    if (seg != null) {
                        sum += seg.modCount;
                        int c = seg.count;
                        if (c < 0 || (size += c) < 0)
                            overflow = true;
                    }
                }
                //如果两次值一样,那么认为该值一样,返回
                if (sum == last)
                    break;
                last = sum;
            }
        } finally {
            //如果之前加锁了,那么需要对每一个Segment释放锁
            if (retries > RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j)
                    segmentAt(segments, j).unlock();
            }
        }
        //如果size超过了Integer.MAX_VALUE,那么将返回Integer.MAX_VALUE
        return overflow ? Integer.MAX_VALUE : size;
    }

从上面可以看到size()方法如果在retries为0和1时两次计算的sum值一样,那么将会跳出循环返回该值;而如果两次该值不相同,那么就会尝试锁住每一个Segment,然后再累加每一个segment中的数量。
最后在返回值的时候需要注意,如果值超过了Integer.MAX_VALUE,那么只会Integer.MAX_VALUE。
那么为什么会超过Integer.MAX_VALUE值呢?
这是因为每一个Segment中的最大元素个数为MAXIMUM_CAPACITY(2^30),而ConcurrentHashMap最多有MAX_SEGMENTS(2^16)个Segment,那么一个ConcurrentHashMap最多将会有(2^46)个元素,自然是可能超过int的最大值的。

总结

JDK1.7中ConcurrentHashMap采用的是借助于Segment的分段加锁机制+CAS实现的线程安全,每一个Segment负责管理其内部的Table,每一个Segment其实类似于一个HashMap,其内部是线程安全的,因为其线程安全是外部Segment所提供的。

你可能感兴趣的:(Java并发库源码解析)