- matlab时域离散信号与系统,时域离散信号和系统的频域分析
远方有城
matlab时域离散信号与系统
信号与系统的分析方法有两种:时域分析方法和频域分析方法。在连续时间信号与系统中,信号一般用连续变量时间t的函数表示,系统用微分方程描述,其频域分析方法是拉普拉斯变换和傅立叶变换。在时域离散信号与系统中,信号用序列表示,其自变量仅取整数,非整数时无定义,系统则用差分方程描述,频域分析方法是Z变换和序列傅立叶变换法。Z变换在离散时间系统中的作用就如同拉普拉斯变换在连续时间系统中的作用一样,它把描述离散
- python 实现euler modified变形欧拉法算法
luthane
python算法开发语言
eulermodified变形欧拉法算法介绍EulerModified(改进)变形欧拉法算法,也被称为欧拉修改法或修正欧拉法(EulerModifiedMethod),是一种用于数值求解微分方程的改进方法。这种方法在传统欧拉法的基础上进行了优化,以减少误差。基本原理欧拉法是一种通过逐步逼近来计算函数值的方法,但在某些情况下,传统的欧拉法可能会引入较大的误差。改进的欧拉法通过使用平均斜率来减小误差。
- 二维非稳态导热微分方程_二维非稳态传热的温度场数值模拟
weixin_39759060
二维非稳态导热微分方程
背景:这是本学期凝固实验课的实验之一。这节课有两个数值模拟实验,第一个是二维常物性的,只有一种介质。而第二个实验是模拟凝固过程,稍微复杂一些。这篇文章是针对第一个实验写的,实验书上是按照显示差分进行的,这里改为隐式差分以便于计算。由于本人不是学CS的,因此代码的质量可能不是很高。简要说明:二维非稳态传热、常物性、第一类边界条件、无内热源、网格的划分计算原理概述直角坐标系内二维导热过程温度场控制微分
- 控制系统与MATLAB的菜鸟教程(二)…
originalsinQ
matlab控制系统设计
为打字方便,以下把MATLAB简称“小麦”周六到鸟!!我爱周六!!泡上一杯茶,继续写这个东东……按上次说的,这篇来个一锅端,内容设涉及到数值计算,操作矩阵,符号运算,求解微分方程,基本的编程语句等。所有例子的运行结果我就不给出答案了,可以自己运行一下,一些代码我在输入的时候难免马虎,望包涵,一些可以自行修改,一些可以提出来,我会尽快修正。一些需要特别注意的问题我用粉红色的四号字标出,大家务必要记住
- 非理工科院校怎么打好数学建模比赛 | 南川笔记
南川笔记
Proposition1非理工科院校最好不要打数学建模比赛。虽说“一次建模,终身受益”,但毕竟数学建模既要数学理论的支撑(不仅仅是大学里的微积分、线性代数和概率论与统计,更多的是基于微积分的常偏微分方程、基于线性代数的运筹学和基于概率论与统计的统计分析内容),还要编程的支撑(不是常规的C语言或者Java程序,也不是这几年很火的Python编程,而是基于数值运算的Matlab和基于统计的R),这在一
- Python求解二阶微分方程的解析解
weixin_30777913
python算法前端
代码:fromsympyimportsymbols,Function,dsolve#定义自变量和因变量x=symbols('x')y=Function('y')(x)#定义微分方程eq=y.diff(x,2)+4*y.diff(x)+3*y-xy=Function('y')#使用dsolve求解微分方程solution=dsolve(eq,y(x))print(solution)结果:Eq(y(x
- Python求解微分方程
@星辰大海@
python开发语言
一、引言微分方程表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。微分方程种类很多,具体分类可参考以下博主的文章:https://blog.csdn.net/air_729/article/details/139411996微分方程的解又分成通解和特解,在工程中大多数微分方程是很难得到通解的,因此出现了数值分析或者计算方法这门学科,通过一次次迭代得到方程的某一个或某几个特解,本文
- 2024国赛数学建模保姆级选题建议,思路教程
灿灿数模分号
数学建模
2024年高教社杯全国大学生数学建模竞赛题目分析,思路模型代码论文持续更新,更新见文末名片A题:“板凳龙”闹元宵难度:中等偏上适合专业:工程力学、机械工程、物理、计算机科学、数学等专业的学生适合解答这一题。特别是有扎实几何建模、力学和动态模拟基础的学生。主要算法和模型:1.几何建模:需要建立空间几何模型,可以用螺旋线方程、空间曲线运动方程来描述舞龙队的位置和速度。2.动力学模拟:可以使用微分方程或
- python数值积分_Python求解数值积分
weixin_39892311
python数值积分
本小节求解下述定积分:$$int_{0.7}^4(cos(2πx)e^{-x}+1.2)mathrm{d}x$$版权声明本文可以在互联网上自由转载,但必须:注明出处(作者:海洋饼干叔叔)并包含指向本页面的链接。本文不可以以纸质出版为目的进行改编、摘抄。数值积分-integrateintegrate模块提供了好几种数值积分的方法,包括常微分方程组(ODE)的数值积分。相关函数列表如下:函数名作用函数
- 2022国赛数学建模A题B题C题资料思路汇总(含有代码可运行)_2022高教社杯数学建模a题代码
2401_84619342
2024年程序员学习python
占个位置吧,开始在本帖实时更新赛题思路代码,先更新下初步的想法和资料持续为更新参考思路,可以自行获取。赛题思路会持续进行思路模型分析,下自行获取。A题初步思路想法:A题跟前几年的国赛题高温防护服有点类似,考察能量转换的一个问题,需要求出具体的解,该题目难度略大,结果较精确,小白选择的时候慎重考虑!根据A题给出的问题,需要用到优化模型进行求解,后期需要数学模型能力比较强的选手,要通过构建偏微分方程,
- 备战2024数学建模国赛(模型二十五):微分方程 优秀案例(一)基于非稳态导热的高温作业专用服装设计
2024年数学建模国赛
备战2024数学建模国赛备战2024数学建模数学建模人工智能备战2024数学建模国赛深度学习数学建模国赛2024
专栏内容(赛前预售价99,比赛期间299):2024数学建模国赛期间会发布思路、代码和优秀论文。(本专栏达不到国一的水平,适用于有一点点基础冲击省奖的同学,近两年有二十几个国二,但是达不到国一,普遍获得省奖,请勿盲目订阅)python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群
- 偏微分 python_基于Python求解偏微分方程的有限差分法.doc
weixin_39612220
偏微分python
基于Python求解偏微分方程的有限差分法.doc基于Python求解偏微分方程的有限差分法(西安石油大学电子工程学院光电油气测井与检测教育部重点实验室,陕西西安710065)摘要:偏微分方程的求解是很多科学技术问题的关键难点。随着计算机性能的不断提高,数值解法能够解复杂的偏微分方程并将计算结果图形化。相对于昂贵的科学计算软件,Python是一种免费的面向对象、动态的程序设计语言。有限差分法以其概
- 【自动驾驶】控制算法(四)坐标变换与横向误差微分方程
清流君
运动控制自动驾驶人工智能控制算法笔记
写在前面:欢迎光临清流君的博客小天地,这里是我分享技术与心得的温馨角落。个人主页:清流君_CSDN博客,期待与您一同探索移动机器人领域的无限可能。本文系清流君原创之作,荣幸在CSDN首发若您觉得内容有价值,还请评论告知一声,以便更多人受益。转载请注明出处,尊重原创,从我做起。点赞、评论、收藏,三连走一波,让我们一起养成好习惯在这里,您将收获的不只是技术干货,还有思维的火花!系列专栏:【运动控制】系
- 【学习笔记】灰色预测 GM(1,1) 模型 —— Matlab
望月12138
学习笔记matlab
文章目录前言一、灰色预测模型灰色预测适用情况GM(1,1)模型二、示例指数规律检验(原始数据级比检验)级比检验的定义GM(1,1)模型的级比检验模型求解求解微分方程模型评价(检验模型对原始数据的拟合程度)残差检验级比偏差检验三、代码实现----Matlab级比检验代码模型求解代码调用模型求解代码进行预测前言通过模型算法,熟练对Matlab的应用。学习视频链接:https://www.bilibil
- SciPy:基于 NumPy 的算法库和数学工具包,用于数学、科学和工程领域。
Jr_l
#数据科学scipynumpy算法
引言SciPy是一个基于NumPy的开放源码算法库和数学工具包,广泛应用于数学、科学、工程等领域。SciPy扩展了NumPy的功能,提供了更高级的数学算法和函数,使得科学计算更加便捷和高效。SciPy的目标是为用户提供一个全面的科学计算环境,其中涵盖了常见的线性代数、优化、积分、插值、傅里叶变换、信号处理、统计、图像处理、以及ODE(常微分方程)求解等功能。作为NumPy的自然延伸,SciPy主要
- 微分方程求解器电路Simulink仿真
uestc_Venn
matlab嵌入式硬件硬件架构
假设RC振荡电路中的电容电压v_C状态方程如下:给定初始条件v_C(0)=1V,则该方程的数值关系可用如下所示的方块图表示:该方块图可在Simulink内使用元件搭建求解电路,如下图所示:将模型集成为子系统后,输入阶跃信号,通过示波器读出状态电压:稳态则为最终解:
- Python在高等数学和线性代数中的应用
学习不止,掉发不停
数学建模python
Python数学实验与建模学习目录1.SymPy工具库1.1符号运算基础1.2用SymPy做符号函数画图2.高等数学的符号解2.1极限2.2导数2.3级数求和2.4泰勒展开2.5不定积分和定积分2.6代数方程2.7微分方程3.高等数学问题的数值解3.1一重积分3.1.1梯形计算3.1.2辛普森计算3.2多重积分3.3非线性方程数值解3.3.1二分法求根3.3.2牛顿迭代法求根3.3.3scipy工
- 机器学习第二十八周周报 PINNs2
沽漓酒江
机器学习人工智能
文章目录week28PINNs2摘要Abstract一、Lipschitz条件二、文献阅读1.题目数据驱动的偏微分方程2.连续时间模型3.离散时间模型4.结论三、CLSTM1.任务要求2.实验结果3.实验代码3.1模型构建3.2训练过程代码小结参考文献week28PINNs2摘要本文主要讨论PINN。本文简要介绍了Lipschitz条件。其次本文展示了题为Physics-informedneura
- 普及精英思维任重道远
鹭江渔夫
普及就要考虑成本。国家出钱,不可能给你安排马术、击剑、高尔夫、射击。这是一。说到拉丁文,都有拉丁文,但是难度悬殊。就好像都有数学,四则运算是数学,二阶偏微分方程也是数学,这是二。看看中国每年为欧美提供多少高才生,就知道中国的义务教育水平如何。人口基数是一方面,人口基数要和教育质量共同发生作用。这是三。高等教育水平与国家科技水平有关,后发国家的学生去发达国家学习,是正常现象。后发国家在义务教育阶段为
- matlab S函数
追逐太阳的月亮
matlab
S函数中mdlDerivative(t,x,u)参数含义mdlDerivative()中的sys相当于是函数之间用x传递等于output函数x;output()中的sys相当于是输出y;mdlDerivative()的作用是将微分方程自动求积分得到结果函数;S函数的用法先是初始化;再是mdlDerivative()中对控制系统方程需要积分的方程进行计算;得到的中间变量转到output()函数中,在
- 2018-10-12
快乐的大脚aaa
第八章离散时间系统的变换域分析变换域分析原因:将求解问题简单对于连续时间系统,通过L.T.,可以将原来求解微分方程问题转化为求解代数方程问题对于离散时间系统,通过Z.T.,可以将原来求解差分方程问题转化为求解代数方程问题。离散时间序列的频域分析方法离散时间系统和离散时间序列也可以通过正交分解方法,在频域进行分析。--离散时间序列傅里叶变换DTFT,Z变换的一个特例傅里叶变换的离散形式--离散傅里叶
- [数学建模] 计算差分方程的收敛点
YuanDaima2048
算法学习matlab数学建模算法学习笔记
[数学建模]计算差分方程的收敛点差分方程:差分方程描述的是在离散时间下系统状态之间的关系。与微分方程不同,差分方程处理的是在不同时间点上系统状态的变化。通常用来模拟动态系统,如在离散时间点上更新状态并预测未来状态。收敛点:在数学或计算中,收敛点指的是序列、函数或方程不断接近某个特定值或集合的点。当序列或函数的值趋于某个值或集合时,我们称该值或集合为收敛点。在计算中,收敛点表示在进行迭代或计算的过程
- 基于python和matlab的复杂函数拟合的方法、工具以及学习资料
suoge223
复杂函数拟合pythonmatlab开发语言
复杂函数拟合是指对具有复杂形式的函数进行拟合,例如积分函数、微分方程、偏微分函数、隐函数、方程组的拟合,通常涉及到非线性、多变量、高维度、高阶、多参数等情况。在实际应用中,复杂函数拟合常常需要结合不同的拟合方法和工具来实现。下面我们将列举常见的复杂函数拟合种类、对应的拟合方法、实现工具以及示例代码。1.非线性函数拟合非线性函数拟合是对具有非线性关系的函数进行拟合,通常需要使用迭代优化算法来寻找最优
- 常/偏微分方程的类型及数值求解方法和求解工具
suoge223
numpypythonmatlab算法
本文主要列举常/偏微分方程的类型及相应数值求解方法和求解工具,并在文末推荐了网络上的一些求解常/偏微分方程课程,希望能帮助到大家!偏微分方程(PartialDifferentialEquations,PDEs)是包含未知函数及其偏导数的方程,通常用于描述多个自变量之间的关系,并广泛应用于自然科学和工程领域。根据方程的性质和系数的不同,PDEs可以分为多种类型,每种类型都有其特点和相应的求解方法。以
- Python环境下基于辛几何模态分解的信号分解方法
哥廷根数学学派
信号处理python开发语言算法人工智能
基于辛几何的分析方法是一种保护相空间几何结构的新型分析方法,主要用于求解动力学和控制系统中矩阵或Hamilton矩阵的特征值问题,用来解决在动力学和控制系统理论的2n×2n矩阵或哈密顿矩阵的特征值问题,已应用到结构损伤信号、奇异微分方程等系统中。辛几何谱分析SGSA是基于辛几何的一种分析方法,在非线性信号的降噪分析中具有独特优势。辛几何模态分解SGMD是在辛几何分析的基础上一种新的信号分解方法,其
- ODE45——求解状态变量(微分方程组)
Y. F. Zhang
控制系统仿真与CAD
ode45函数ode45实际上是数值分析中数值求解微分方程组的一种方法,4阶五级Runge-Kutta算法。调用方法[t,x]=ode45(Fun,tspan,x0,options,pars)[t,x]=ode45(Fun,tspan,x_0,options,pars)[t,x]=ode45(Fun,tspan,x0,options,pars)其实这种方程的每一个状态变量都是t的函数,我们可以从现
- 第1章 数字基础
猫三他爹
引在本章中,我们将尝试讨论整个文本中使用的所有数值技术。我们将首先讨论向量和矩阵,并说明在应用卡尔曼滤波方程时我们需要知道的各种操作。接下来,我们将展示如何使用两种不同的数值积分技术来求解线性和非线性微分方程。当我们必须将表示现实世界的微分方程整合在用于评估卡尔曼滤波器性能的模拟中时,数值积分技术是必要的。此外,有时需要数值积分技术来传播来自非线性微分方程的状态。接下来,我们将回顾用于表示随机现象
- 青马在线考试怎么搜题找答案?不妨看看这九个实用工具 #知识分享#微信#笔记
培兔兔
笔记面试职场和发展
在信息爆炸的时代,选择适合自己的学习辅助工具和资料,能够提供更高效、便捷和多样化的学习方式。1.WolframAlphaWolframAlpha堪称“数学解题神器”!可以搜索到大学多个专业的题目以及试卷答案,重点是提供的题目搜索大部分的理科学习资源,包括化学、生物、物理、数学、工程、经济、天文、统计等各个方向。一些常微分方程、泰勒展开等等,搜索的题目全部都有详细的提示,以及中间做题步骤、解决方法,
- 本科生题不会怎么搜答案?分享8个可以搜答案的软件 #职场发展#经验分享#知识分享
春色七分甜33
职场和发展经验分享
今天我就分享几款搜题软件和搜题网站给大家,每一款都能轻松搜索题目,让大家快速找到精准的答案,有需要的小伙伴快点赞收藏起来,防止需要的时候找不到啦。1.WolframAlphaWolframAlpha堪称“数学解题神器”!可以搜索到大学多个专业的题目以及试卷答案,重点是提供的题目搜索大部分的理科学习资源,包括化学、生物、物理、数学、工程、经济、天文、统计等各个方向。一些常微分方程、泰勒展开等等,搜索
- 大学生搜题用这三款神器就够了!!! #经验分享#经验分享#媒体
学习93398
媒体
大学生必备,这条笔记大数据一定定要推给刚上大学的学弟学妹!!1.WolframAlphaWolframAlpha堪称“数学解题神器”!可以搜索到大学多个专业的题目以及试卷答案,重点是提供的题目搜索大部分的理科学习资源,包括化学、生物、物理、数学、工程、经济、天文、统计等各个方向。一些常微分方程、泰勒展开等等,搜索的题目全部都有详细的提示,以及中间做题步骤、解决方法,非常方便大家的复习;2.千鸟搜题
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite